These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Distinction between dipolar and inductive effects in modulating the conductance of gramicidin channels. Koeppe RE; Mazet JL; Andersen OS Biochemistry; 1990 Jan; 29(2):512-20. PubMed ID: 1689177 [TBL] [Abstract][Full Text] [Related]
4. Asymmetric gramicidin channels: heterodimeric channels with a single F6Val1 residue. Oiki S; Koeppe RE; Andersen OS Biophys J; 1994 Jun; 66(6):1823-32. PubMed ID: 7521224 [TBL] [Abstract][Full Text] [Related]
5. Noncontact dipole effects on channel permeation. II. Trp conformations and dipole potentials in gramicidin A. Dorigo AE; Anderson DG; Busath DD Biophys J; 1999 Apr; 76(4):1897-908. PubMed ID: 10096887 [TBL] [Abstract][Full Text] [Related]
6. Model ion channels: gramicidin and alamethicin. Woolley GA; Wallace BA J Membr Biol; 1992 Aug; 129(2):109-36. PubMed ID: 1279177 [TBL] [Abstract][Full Text] [Related]
7. Tryptophans in membrane proteins: indole ring orientations and functional implications in the gramicidin channel. Hu W; Lee KC; Cross TA Biochemistry; 1993 Jul; 32(27):7035-47. PubMed ID: 7687467 [TBL] [Abstract][Full Text] [Related]
8. Modulation of gramicidin channel structure and function by the aliphatic "spacer" residues 10, 12, and 14 between the tryptophans. Jude AR; Greathouse DV; Koeppe RE; Providence LL; Andersen OS Biochemistry; 1999 Jan; 38(3):1030-9. PubMed ID: 9893999 [TBL] [Abstract][Full Text] [Related]
9. Modulating dipoles for structure-function correlations in the gramicidin A channel. Cotten M; Tian C; Busath DD; Shirts RB; Cross TA Biochemistry; 1999 Jul; 38(29):9185-97. PubMed ID: 10413493 [TBL] [Abstract][Full Text] [Related]
10. Amino acid sequence modulation of gramicidin channel function: effects of tryptophan-to-phenylalanine substitutions on the single-channel conductance and duration. Becker MD; Greathouse DV; Koeppe RE; Andersen OS Biochemistry; 1991 Sep; 30(36):8830-9. PubMed ID: 1716152 [TBL] [Abstract][Full Text] [Related]
11. Gramicidin channels that have no tryptophan residues. Fonseca V; Daumas P; Ranjalahy-Rasoloarijao L; Heitz F; Lazaro R; Trudelle Y; Andersen OS Biochemistry; 1992 Jun; 31(23):5340-50. PubMed ID: 1376621 [TBL] [Abstract][Full Text] [Related]
12. Stabilizing effect of D-alanine2 in gramicidin channels. Mattice GL; Koeppe RE; Providence LL; Andersen OS Biochemistry; 1995 May; 34(20):6827-37. PubMed ID: 7538788 [TBL] [Abstract][Full Text] [Related]
13. Noncontact dipole effects on channel permeation. V. Computed potentials for fluorinated gramicidin. Anderson DG; Shirts RB; Cross TA; Busath DD Biophys J; 2001 Sep; 81(3):1255-64. PubMed ID: 11509342 [TBL] [Abstract][Full Text] [Related]
14. Peptide backbone chemistry and membrane channel function: effects of a single amide-to-ester replacement on gramicidin channel structure and function. Jude AR; Providence LL; Schmutzer SE; Shobana S; Greathouse DV; Andersen OS; Koeppe R Biochemistry; 2001 Feb; 40(5):1460-72. PubMed ID: 11170474 [TBL] [Abstract][Full Text] [Related]
15. Adaptive Brownian dynamics simulation for estimating potential mean force in ion channel permeation. Krishnamurthy V; Chung SH IEEE Trans Nanobioscience; 2006 Jun; 5(2):126-38. PubMed ID: 16805109 [TBL] [Abstract][Full Text] [Related]
16. Ionic permeation free energy in gramicidin: a semimicroscopic perspective. Dorman VL; Jordan PC Biophys J; 2004 Jun; 86(6):3529-41. PubMed ID: 15189852 [TBL] [Abstract][Full Text] [Related]
17. Membrane dipole potential modulates proton conductance through gramicidin channel: movement of negative ionic defects inside the channel. Rokitskaya TI; Kotova EA; Antonenko YN Biophys J; 2002 Feb; 82(2):865-73. PubMed ID: 11806928 [TBL] [Abstract][Full Text] [Related]
18. Kinetics of gramicidin channel formation in lipid bilayers: transmembrane monomer association. O'Connell AM; Koeppe RE; Andersen OS Science; 1990 Nov; 250(4985):1256-9. PubMed ID: 1700867 [TBL] [Abstract][Full Text] [Related]
19. The role of the dielectric barrier in narrow biological channels: a novel composite approach to modeling single-channel currents. Mamonov AB; Coalson RD; Nitzan A; Kurnikova MG Biophys J; 2003 Jun; 84(6):3646-61. PubMed ID: 12770873 [TBL] [Abstract][Full Text] [Related]
20. Formamidinium-induced dimer stabilization and flicker block behavior in homo- and heterodimer channels formed by gramicidin A and N-acetyl gramicidin A. Seoh SA; Busath DD Biophys J; 1993 Nov; 65(5):1817-27. PubMed ID: 7507714 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]