These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 7504625)

  • 1. Novel RNA polymerization reaction catalyzed by a group I ribozyme.
    Chowrira BM; Berzal-Herranz A; Burke JM
    EMBO J; 1993 Sep; 12(9):3599-605. PubMed ID: 7504625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 2'-Hydroxyl groups important for exon polymerization and reverse exon ligation reactions catalyzed by a group I ribozyme.
    Berzal-Herranz A; Chowrira BM; Polsenberg JF; Burke JM
    Biochemistry; 1993 Sep; 32(35):8981-6. PubMed ID: 8369271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Group I permuted intron-exon (PIE) sequences self-splice to produce circular exons.
    Puttaraju M; Been MD
    Nucleic Acids Res; 1992 Oct; 20(20):5357-64. PubMed ID: 1279519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A modified group I intron can function as both a ribozyme and a 5' exon in a trans-exon ligation reaction.
    Tasiouka KI; Burke JM
    Gene; 1994 Jun; 144(1):1-7. PubMed ID: 8026742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel system for analysis of group I 3' splice site reactions based on functional trans-interaction of the P1/P10 reaction helix with the ribozyme's catalytic core.
    Chowrira BM; Berzal-Herranz A; Burke JM
    Nucleic Acids Res; 1995 Mar; 23(5):849-55. PubMed ID: 7708502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fate of the junction phosphate in alternating forward and reverse self-splicing reactions of group II intron RNA.
    Müller MW; Stocker P; Hetzer M; Schweyen RJ
    J Mol Biol; 1991 Nov; 222(2):145-54. PubMed ID: 1720462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalysis of RNA cleavage by a ribozyme derived from the group I intron of Anabaena pre-tRNA(Leu).
    Zaug AJ; Dávila-Aponte JA; Cech TR
    Biochemistry; 1994 Dec; 33(49):14935-47. PubMed ID: 7527660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalysis of RNA cleavage by the Tetrahymena thermophila ribozyme. 1. Kinetic description of the reaction of an RNA substrate complementary to the active site.
    Herschlag D; Cech TR
    Biochemistry; 1990 Nov; 29(44):10159-71. PubMed ID: 2271645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Group I intron self-splicing with adenosine: evidence for a single nucleoside-binding site.
    Been MD; Perrotta AT
    Science; 1991 Apr; 252(5004):434-7. PubMed ID: 2017681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural requirement for Mg2+ binding in the group I intron core.
    Rangan P; Woodson SA
    J Mol Biol; 2003 May; 329(2):229-38. PubMed ID: 12758072
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanistic investigations of a ribozyme derived from the Tetrahymena group I intron: insights into catalysis and the second step of self-splicing.
    Mei R; Herschlag D
    Biochemistry; 1996 May; 35(18):5796-809. PubMed ID: 8639540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A chemical phylogeny of group I introns based upon interference mapping of a bacterial ribozyme.
    Strauss-Soukup JK; Strobel SA
    J Mol Biol; 2000 Sep; 302(2):339-58. PubMed ID: 10970738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing the role of a secondary structure element at the 5'- and 3'-splice sites in group I intron self-splicing: the tetrahymena L-16 ScaI ribozyme reveals a new role of the G.U pair in self-splicing.
    Karbstein K; Lee J; Herschlag D
    Biochemistry; 2007 Apr; 46(16):4861-75. PubMed ID: 17385892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Architecture and folding mechanism of the Azoarcus Group I Pre-tRNA.
    Rangan P; Masquida B; Westhof E; Woodson SA
    J Mol Biol; 2004 May; 339(1):41-51. PubMed ID: 15123419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A shortened form of the Tetrahymena thermophila group I intron can catalyze the complete splicing reaction in trans.
    Sargueil B; Tanner NK
    J Mol Biol; 1993 Oct; 233(4):629-43. PubMed ID: 8411170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New reactions catalyzed by a group II intron ribozyme with RNA and DNA substrates.
    Mörl M; Niemer I; Schmelzer C
    Cell; 1992 Sep; 70(5):803-10. PubMed ID: 1381286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure of a self-splicing group I intron with both exons.
    Adams PL; Stahley MR; Kosek AB; Wang J; Strobel SA
    Nature; 2004 Jul; 430(6995):45-50. PubMed ID: 15175762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-splicing of the group I intron from Anabaena pre-tRNA: requirement for base-pairing of the exons in the anticodon stem.
    Zaug AJ; McEvoy MM; Cech TR
    Biochemistry; 1993 Aug; 32(31):7946-53. PubMed ID: 8347600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A ribozyme selected from variants of U6 snRNA promotes 2',5'-branch formation.
    Tuschl T; Sharp PA; Bartel DP
    RNA; 2001 Jan; 7(1):29-43. PubMed ID: 11214178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trans-splicing with the group I intron ribozyme from Azoarcus.
    Dolan GF; Müller UF
    RNA; 2014 Feb; 20(2):202-13. PubMed ID: 24344321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.