These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. Intracellular calcium and hormone release from nerve endings of the neurohypophysis in the presence of opioid agonists and antagonists. Dayanithi G; Stuenkel EL; Nordmann JJ Exp Brain Res; 1992; 90(3):539-45. PubMed ID: 1358668 [TBL] [Abstract][Full Text] [Related]
9. Calcium influx in resting conditions in a preparation of peptidergic nerve terminals isolated from the rat neurohypophysis. Toescu EC J Physiol; 1991 Feb; 433():109-25. PubMed ID: 1668751 [TBL] [Abstract][Full Text] [Related]
10. Regulation of secretory granule recruitment and exocytosis at rat neurohypophysial nerve endings. Giovannucci DR; Stuenkel EL J Physiol; 1997 Feb; 498 ( Pt 3)(Pt 3):735-51. PubMed ID: 9051585 [TBL] [Abstract][Full Text] [Related]
11. Activation of kappa-opioid receptors inhibits depolarisation-evoked exocytosis but not the rise in intracellular Ca2+ in secretory nerve terminals of the neurohypophysis. Kato M; Chapman C; Bicknell RJ Brain Res; 1992 Mar; 574(1-2):138-46. PubMed ID: 1353398 [TBL] [Abstract][Full Text] [Related]
12. Regulation of intracellular calcium and calcium buffering properties of rat isolated neurohypophysial nerve endings. Stuenkel EL J Physiol; 1994 Dec; 481 ( Pt 2)(Pt 2):251-71. PubMed ID: 7738824 [TBL] [Abstract][Full Text] [Related]
13. Ca2+ clearance mechanisms in neurohypophysial terminals of the rat. Sasaki N; Dayanithi G; Shibuya I Cell Calcium; 2005 Jan; 37(1):45-56. PubMed ID: 15541463 [TBL] [Abstract][Full Text] [Related]
14. Ca(2+)-independent regulation of neurosecretion by intracellular Na+. Nordmann JJ; Stuenkel EL FEBS Lett; 1991 Nov; 292(1-2):37-41. PubMed ID: 1959623 [TBL] [Abstract][Full Text] [Related]
15. Calcium-induced calcium increase in secretory vesicles of permeabilized rat neurohypophysial nerve terminals. Troadec JD; Thirion S; Laugier JP; Nicaise G Biol Cell; 1998 Jul; 90(4):339-47. PubMed ID: 9800351 [TBL] [Abstract][Full Text] [Related]
16. Na+ influx through Ca2+ channels can promote striatal GABA efflux in Ca(2+)-deficient conditions in response to electrical field depolarization. Bernath S; Zigmond MJ; Nisenbaum ES; Vizi ES; Berger TW Brain Res; 1993 Dec; 632(1-2):232-8. PubMed ID: 8149231 [TBL] [Abstract][Full Text] [Related]
17. Neuropeptide Y2 receptors on nerve endings from the rat neurohypophysis regulate vasopressin and oxytocin release. Sheikh SP; Feldthus N; Orkild H; Göke R; McGregor GP; Turner D; Møller M; Stuenkel EL Neuroscience; 1998 Jan; 82(1):107-15. PubMed ID: 9483507 [TBL] [Abstract][Full Text] [Related]
18. Role of Q-type Ca2+ channels in vasopressin secretion from neurohypophysial terminals of the rat. Wang G; Dayanithi G; Kim S; Hom D; Nadasdi L; Kristipati R; Ramachandran J; Stuenkel EL; Nordmann JJ; Newcomb R; Lemos JR J Physiol; 1997 Jul; 502 ( Pt 2)(Pt 2):351-63. PubMed ID: 9263915 [TBL] [Abstract][Full Text] [Related]
19. The calcium channel antagonist omega-conotoxin inhibits secretion from peptidergic nerve terminals. Dayanithi G; Martin-Moutot N; Barlier S; Colin DA; Kretz-Zaepfel M; Couraud F; Nordmann JJ Biochem Biophys Res Commun; 1988 Oct; 156(1):255-62. PubMed ID: 3178834 [TBL] [Abstract][Full Text] [Related]
20. Release of vasopressin from isolated permeabilized neurosecretory nerve terminals is blocked by the light chain of botulinum A toxin. Dayanithi G; Ahnert-Hilger G; Weller U; Nordmann JJ; Gratzl M Neuroscience; 1990; 39(3):711-5. PubMed ID: 2097523 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]