BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 7504742)

  • 1. Reverse transcription in hepatitis B viruses is primed by a tyrosine residue of the polymerase.
    Zoulim F; Seeger C
    J Virol; 1994 Jan; 68(1):6-13. PubMed ID: 7504742
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hepadnavirus P protein utilizes a tyrosine residue in the TP domain to prime reverse transcription.
    Weber M; Bronsema V; Bartos H; Bosserhoff A; Bartenschlager R; Schaller H
    J Virol; 1994 May; 68(5):2994-9. PubMed ID: 7512155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Priming of duck hepatitis B virus reverse transcription in vitro: premature termination of primer DNA induced by the 5'-triphosphate of fialuridine.
    Staschke KA; Colacino JM
    J Virol; 1994 Dec; 68(12):8265-9. PubMed ID: 7525986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TP-RT domain interactions of duck hepatitis B virus reverse transcriptase in cis and in trans during protein-primed initiation of DNA synthesis in vitro.
    Boregowda RK; Adams C; Hu J
    J Virol; 2012 Jun; 86(12):6522-36. PubMed ID: 22514346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. dNTP versus NTP discrimination by phenylalanine 451 in duck hepatitis B virus P protein indicates a common structure of the dNTP-binding pocket with other reverse transcriptases.
    Beck J; Vogel M; Nassal M
    Nucleic Acids Res; 2002 Apr; 30(7):1679-87. PubMed ID: 11917030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcomplementation of nucleotide priming and reverse transcription between independently expressed TP and RT domains of the hepatitis B virus reverse transcriptase.
    Lanford RE; Notvall L; Lee H; Beames B
    J Virol; 1997 Apr; 71(4):2996-3004. PubMed ID: 9060659
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selected mutations of the duck hepatitis B virus P gene RNase H domain affect both RNA packaging and priming of minus-strand DNA synthesis.
    Chen Y; Robinson WS; Marion PL
    J Virol; 1994 Aug; 68(8):5232-8. PubMed ID: 8035519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel mechanism for reverse transcription in hepatitis B viruses.
    Wang GH; Seeger C
    J Virol; 1993 Nov; 67(11):6507-12. PubMed ID: 7692081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinct requirement for two stages of protein-primed initiation of reverse transcription in hepadnaviruses.
    Wang X; Hu J
    J Virol; 2002 Jun; 76(12):5857-65. PubMed ID: 12021318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chaperones activate hepadnavirus reverse transcriptase by transiently exposing a C-proximal region in the terminal protein domain that contributes to epsilon RNA binding.
    Stahl M; Beck J; Nassal M
    J Virol; 2007 Dec; 81(24):13354-64. PubMed ID: 17913810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective inhibition of the reverse transcription of duck hepatitis B virus by binding of 2',3'-dideoxyguanosine 5'-triphosphate to the viral polymerase.
    Howe AY; Robins MJ; Wilson JS; Tyrrell DL
    Hepatology; 1996 Jan; 23(1):87-96. PubMed ID: 8550054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional and structural dynamics of hepadnavirus reverse transcriptase during protein-primed initiation of reverse transcription: effects of metal ions.
    Lin L; Wan F; Hu J
    J Virol; 2008 Jun; 82(12):5703-14. PubMed ID: 18400846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Duck hepatitis B virus polymerase produced by in vitro transcription and translation possesses DNA polymerase and reverse transcriptase activities.
    Howe AY; Elliott JF; Tyrrell DL
    Biochem Biophys Res Commun; 1992 Dec; 189(2):1170-6. PubMed ID: 1281990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of insertional and point mutations on the functions of the duck hepatitis B virus polymerase.
    Chang LJ; Hirsch RC; Ganem D; Varmus HE
    J Virol; 1990 Nov; 64(11):5553-8. PubMed ID: 1698997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heat shock protein 90-independent activation of truncated hepadnavirus reverse transcriptase.
    Wang X; Qian X; Guo HC; Hu J
    J Virol; 2003 Apr; 77(8):4471-80. PubMed ID: 12663754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hepadnavirus reverse transcription initiates within the stem-loop of the RNA packaging signal and employs a novel strand transfer.
    Tavis JE; Perri S; Ganem D
    J Virol; 1994 Jun; 68(6):3536-43. PubMed ID: 8189492
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nucleotide priming and reverse transcriptase activity of hepatitis B virus polymerase expressed in insect cells.
    Lanford RE; Notvall L; Beames B
    J Virol; 1995 Jul; 69(7):4431-9. PubMed ID: 7539509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence that the first strand-transfer reaction of duck hepatitis B virus reverse transcription requires the polymerase and that strand transfer is not needed for the switch of the polymerase to the elongation mode of DNA synthesis.
    Gong Y; Yao E; Stevens M; Tavis JE
    J Gen Virol; 2000 Aug; 81(Pt 8):2059-2065. PubMed ID: 10900045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hepadnavirus assembly and reverse transcription require a multi-component chaperone complex which is incorporated into nucleocapsids.
    Hu J; Toft DO; Seeger C
    EMBO J; 1997 Jan; 16(1):59-68. PubMed ID: 9009268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polymerase gene products of hepatitis B viruses are required for genomic RNA packaging as wel as for reverse transcription.
    Hirsch RC; Lavine JE; Chang LJ; Varmus HE; Ganem D
    Nature; 1990 Apr; 344(6266):552-5. PubMed ID: 1690862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.