These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 7504944)

  • 21. Vanadate-mediated hydroxyl radical generation from superoxide radical in the presence of NADH: Haber-Weiss vs Fenton mechanism.
    Shi X; Dalal NS
    Arch Biochem Biophys; 1993 Dec; 307(2):336-41. PubMed ID: 8274019
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Singlet oxygen generation in the superoxide reaction.
    Mao Y; Zang L; Shi X
    Biochem Mol Biol Int; 1995 May; 36(1):227-32. PubMed ID: 7663419
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Redox cycling of potential antitumor aziridinyl quinones.
    Lusthof KJ; de Mol NJ; Richter W; Janssen LH; Butler J; Hoey BM; Verboom W; Reinhoudt DN
    Free Radic Biol Med; 1992 Dec; 13(6):599-608. PubMed ID: 1334033
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanisms of oxygen activation by nitrofurantoin and relevance to its toxicity.
    Youngman RJ; Osswald WF; Elstner EF
    Biochem Pharmacol; 1982 Dec; 31(23):3723-9. PubMed ID: 6297496
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Superoxide-dependent formation of hydroxyl radical catalyzed by transferrin.
    Motohashi N; Mori I
    FEBS Lett; 1983 Jun; 157(1):197-9. PubMed ID: 6305716
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hydroxyl radical mediated demethylenation of (methylenedioxy)phenyl compounds.
    Kumagai Y; Lin LY; Schmitz DA; Cho AK
    Chem Res Toxicol; 1991; 4(3):330-4. PubMed ID: 1680477
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bleomycin-iron damage to DNA with formation of 8-hydroxydeoxyguanosine and base propenals. Indications that xanthine oxidase generates superoxide from DNA degradation products.
    Gutteridge JM; West M; Eneff K; Floyd RA
    Free Radic Res Commun; 1990; 10(3):159-65. PubMed ID: 1697821
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The role of the superoxide and hydroxyl radicals in the degradation of DNA and deoxyribose induced by a copper-phenanthroline complex.
    Gutteridge JM; Halliwell B
    Biochem Pharmacol; 1982 Sep; 31(17):2801-5. PubMed ID: 6291545
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Xanthine oxidase induced depolymerization of hyaluronic acid in the presence of ferritin.
    Carlin G; Djursäter R
    FEBS Lett; 1984 Nov; 177(1):27-30. PubMed ID: 6094241
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Release of iron from ferritin by xanthine oxidase. Role of the superoxide radical.
    Bolann BJ; Ulvik RJ
    Biochem J; 1987 Apr; 243(1):55-9. PubMed ID: 3038086
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Vanadium promotes hydroxyl radical formation by activated human neutrophils.
    Fickl H; Theron AJ; Grimmer H; Oommen J; Ramafi GJ; Steel HC; Visser SS; Anderson R
    Free Radic Biol Med; 2006 Jan; 40(1):146-55. PubMed ID: 16337888
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inhibition of hydroxyl radical formation by human tears.
    Kuizenga A; van Haeringen NJ; Kijlstra A
    Invest Ophthalmol Vis Sci; 1987 Feb; 28(2):305-13. PubMed ID: 8591912
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Superoxide-dependent and ascorbate-dependent formation of hydroxyl radicals from hydrogen peroxide in the presence of iron. Are lactoferrin and transferrin promoters of hydroxyl-radical generation?
    Aruoma OI; Halliwell B
    Biochem J; 1987 Jan; 241(1):273-8. PubMed ID: 3032157
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Superoxide-dependent and ascorbate-dependent formation of hydroxyl radicals in the presence of copper salts: a physiologically significant reaction?
    Rowley DA; Halliwell B
    Arch Biochem Biophys; 1983 Aug; 225(1):279-84. PubMed ID: 6311105
    [TBL] [Abstract][Full Text] [Related]  

  • 35. When do metal complexes protect the biological system from superoxide toxicity and when do they enhance it?
    Czapski G; Goldstein S
    Free Radic Res Commun; 1986; 1(3):157-61. PubMed ID: 2577732
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hydroxyl radical formation and iron-binding proteins. Stimulation by the purple acid phosphatases.
    Sibille JC; Doi K; Aisen P
    J Biol Chem; 1987 Jan; 262(1):59-62. PubMed ID: 3025217
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Superoxide-dependent formation of hydroxyl radicals in the presence of iron chelates: is it a mechanism for hydroxyl radical production in biochemical systems?
    Halliwell B
    FEBS Lett; 1978 Aug; 92(2):321-6. PubMed ID: 212302
    [No Abstract]   [Full Text] [Related]  

  • 38. Superoxide-dependent and -independent mechanisms of iron mobilization from ferritin by xanthine oxidase. Implications for oxygen-free-radical-induced tissue destruction during ischaemia and inflammation.
    Biemond P; Swaak AJ; Beindorff CM; Koster JF
    Biochem J; 1986 Oct; 239(1):169-73. PubMed ID: 3026367
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A high performance liquid chromatography system for quantification of hydroxyl radical formation by determination of dihydroxy benzoic acids.
    Owen RW; Wimonwatwatee T; Spiegelhalder B; Bartsch H
    Eur J Cancer Prev; 1996 Aug; 5(4):233-40. PubMed ID: 8894560
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Superoxide radical production by allopurinol and xanthine oxidase.
    Galbusera C; Orth P; Fedida D; Spector T
    Biochem Pharmacol; 2006 Jun; 71(12):1747-52. PubMed ID: 16650385
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.