These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 7505100)
1. Dephytinization of a rat diet. Consequences for mineral and trace element absorption. Larsen T Biol Trace Elem Res; 1993 Oct; 39(1):55-71. PubMed ID: 7505100 [TBL] [Abstract][Full Text] [Related]
2. Adaptive increase in phytate digestibility by phosphorus-deprived rats and the relationship of intestinal phytase (EC 3.1.3.8) and alkaline phosphatase (EC 3.1.3.1) to phytate utilization. Moore RJ; Veum TL Br J Nutr; 1983 Jan; 49(1):145-52. PubMed ID: 6295437 [TBL] [Abstract][Full Text] [Related]
3. [Absence of effect of vitamin D on intestinal phytase and alkaline phosphatase: relation with phytic phosphorus in the pig]. Fontaine N; Fourdin A; Pointillart A Reprod Nutr Dev (1980); 1985; 25(4A):717-27. PubMed ID: 2996095 [TBL] [Abstract][Full Text] [Related]
4. Tissues and organs as indicators of intestinal absorption of minerals and trace elements, evaluated in rats. Larsen T; Sandström B Biol Trace Elem Res; 1992 Nov; 35(2):185-99. PubMed ID: 1280983 [TBL] [Abstract][Full Text] [Related]
5. The similarity between alkaline phosphatase (EC 3.1.3.1) and phytase (EC 3.1.3.8) activities in rat intestine and their importance in phytate-induced zinc deficiency. Davies NT; Flett AA Br J Nutr; 1978 Mar; 39(2):307-16. PubMed ID: 204327 [TBL] [Abstract][Full Text] [Related]
6. Phytase-mediated mineral solubilization from cereals under in vitro gastric conditions. Nielsen AV; Meyer AS J Sci Food Agric; 2016 Aug; 96(11):3755-61. PubMed ID: 26678688 [TBL] [Abstract][Full Text] [Related]
7. Phytase activity of lactic acid bacteria and their impact on the solubility of minerals from wholemeal wheat bread. Cizeikiene D; Juodeikiene G; Bartkiene E; Damasius J; Paskevicius A Int J Food Sci Nutr; 2015; 66(7):736-42. PubMed ID: 26397032 [TBL] [Abstract][Full Text] [Related]
8. Absorption studies show that phytase from Aspergillus niger significantly increases iron and zinc bioavailability from phytate-rich foods. Troesch B; Jing H; Laillou A; Fowler A Food Nutr Bull; 2013 Jun; 34(2 Suppl):S90-101. PubMed ID: 24050000 [TBL] [Abstract][Full Text] [Related]
9. Response of broiler chickens to microbial phytase supplementation as influenced by dietary phytic acid and non-phytate phosphorous levels. II. Effects on apparent metabolisable energy, nutrient digestibility and nutrient retention. Ravindran V; Cabahug S; Ravindra G; Selle PH; Bryden WL Br Poult Sci; 2000 May; 41(2):193-200. PubMed ID: 10890216 [TBL] [Abstract][Full Text] [Related]
10. Nutritional significance of phytic acid and phytase. Pallauf J; Rimbach G Arch Tierernahr; 1997; 50(4):301-19. PubMed ID: 9345595 [TBL] [Abstract][Full Text] [Related]
11. Effect of calcium, copper, and zinc levels in a rapeseed meal diet on mineral and trace element utilization in the rat. Larsen T; Sandström B Biol Trace Elem Res; 1992 Nov; 35(2):167-84. PubMed ID: 1280982 [TBL] [Abstract][Full Text] [Related]
12. Phytate in pig and poultry nutrition. Humer E; Schwarz C; Schedle K J Anim Physiol Anim Nutr (Berl); 2015 Aug; 99(4):605-25. PubMed ID: 25405653 [TBL] [Abstract][Full Text] [Related]
13. Phytase Production and Development of an Ideal Dephytinization Process for Amelioration of Food Nutrition Using Microbial Phytases. Jain J; Singh B Appl Biochem Biotechnol; 2017 Apr; 181(4):1485-1495. PubMed ID: 27796873 [TBL] [Abstract][Full Text] [Related]
14. Effect of calcium supplements to a maize-soya diet on the bioavailability of minerals and trace elements and the accumulation of heavy metals in growing rats. Walter A; Rimbach G; Most E; Pallauf J J Vet Med A Physiol Pathol Clin Med; 2000 Aug; 47(6):367-77. PubMed ID: 11008445 [TBL] [Abstract][Full Text] [Related]
15. Supplementation of alkaline phytase (Ds11) in whole-wheat bread reduces phytate content and improves mineral solubility. Park YJ; Park J; Park KH; Oh BC; Auh JH J Food Sci; 2011 Aug; 76(6):C791-4. PubMed ID: 21623782 [TBL] [Abstract][Full Text] [Related]
16. Effect of microbial phytase on phytate P degradation and apparent digestibility of total P and Ca throughout the gastrointestinal tract of the growing pig. Rutherfurd SM; Chung TK; Moughan PJ J Anim Sci; 2014 Jan; 92(1):189-97. PubMed ID: 24243891 [TBL] [Abstract][Full Text] [Related]
17. Effect of low-phytate barley or phytase supplementation to a barley-soybean meal diet on phosphorus retention and excretion by grower pigs. Htoo JK; Sauer WC; Yáñez JL; Cervantes M; Zhang Y; Helm JH; Zijlstra RT J Anim Sci; 2007 Nov; 85(11):2941-8. PubMed ID: 17591717 [TBL] [Abstract][Full Text] [Related]
18. Characterisation of European varieties of triticale with special emphasis on the ability of plant phytase to improve phytate phosphorus availability to chickens. Jondreville C; Genthon C; Bouguennec A; Carre B; Nys Y Br Poult Sci; 2007 Dec; 48(6):678-89. PubMed ID: 18085450 [TBL] [Abstract][Full Text] [Related]
19. Phytate and phytase in fish nutrition. Kumar V; Sinha AK; Makkar HP; De Boeck G; Becker K J Anim Physiol Anim Nutr (Berl); 2012 Jun; 96(3):335-64. PubMed ID: 21692871 [TBL] [Abstract][Full Text] [Related]
20. Effects of ethylenediaminetetraacetic acid on phytate phosphorus utilization and efficiency of microbial phytase in broiler chicks. Ebrahimnezhad Y; Shivazad M; Taherkhani R; Nazeradl K J Anim Physiol Anim Nutr (Berl); 2008 Apr; 92(2):168-72. PubMed ID: 18336413 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]