BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 7505153)

  • 1. The effect of boron on plasma membrane electron transport and associated proton secretion by cultured carrot cells.
    Barr R; Böttger M; Crane FL
    Biochem Mol Biol Int; 1993 Sep; 31(1):31-9. PubMed ID: 7505153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methotrexate: studies on cellular metabolism. III.--Effect on the transplasma-membrane redox activity and on ferricyanide-induced proton extrusion by HeLa cells.
    Oliveira MB; Campello AP; Klüppel WL
    Cell Biochem Funct; 1989 Apr; 7(2):135-7. PubMed ID: 2548755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Destruction of vitamin K1 of cultured carrot cells by ultraviolet radiation and its effect on plasma membrane electron transport reactions.
    Barr R; Pan RS; Crane FL; Brightman AO; Morré DJ
    Biochem Int; 1992 Jul; 27(3):449-56. PubMed ID: 1417882
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth of rho 0 human Namalwa cells lacking oxidative phosphorylation can be sustained by redox compounds potassium ferricyanide or coenzyme Q10 putatively acting through the plasma membrane oxidase.
    Martinus RD; Linnane AW; Nagley P
    Biochem Mol Biol Int; 1993 Dec; 31(6):997-1005. PubMed ID: 8193603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transferrin-adriamycin conjugates which inhibit tumor cell proliferation without interaction with DNA inhibit plasma membrane oxidoreductase and proton release in K562 cells.
    Faulk WP; Barabas K; Sun IL; Crane FL
    Biochem Int; 1991 Dec; 25(5):815-22. PubMed ID: 1666508
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transplasma membrane electron and proton transport is inhibited by chloroquine.
    Toole-Simms W; Sun IL; Morré DJ; Crane FL
    Biochem Int; 1990; 21(4):761-9. PubMed ID: 2173587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The antiproliferative effects of phenoxodiol are associated with inhibition of plasma membrane electron transport in tumour cell lines and primary immune cells.
    Herst PM; Petersen T; Jerram P; Baty J; Berridge MV
    Biochem Pharmacol; 2007 Dec; 74(11):1587-95. PubMed ID: 17904534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Putting together a plasma membrane NADH oxidase: a tale of three laboratories.
    Löw H; Crane FL; Morré DJ
    Int J Biochem Cell Biol; 2012 Nov; 44(11):1834-8. PubMed ID: 22750028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation and identification of a protein with capsaicin-inhibited NADH oxidase activity from culture media conditioned by growth of HeLa cells.
    Wilkinson F; Kim C; Cho N; Chueh PJ; Leslie S; Moya-Camarena S; Wu LY; Morré DM; Morré DJ
    Arch Biochem Biophys; 1996 Dec; 336(2):275-82. PubMed ID: 8954575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-capacity redox control at the plasma membrane of mammalian cells: trans-membrane, cell surface, and serum NADH-oxidases.
    Berridge MV; Tan AS
    Antioxid Redox Signal; 2000; 2(2):231-42. PubMed ID: 11229528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Blue light-sensitive plasma membrane bound exogenous NADH oxidase in Cuscuta reflexa.
    Masih N; Misra PC
    Indian J Exp Biol; 2000 Aug; 38(8):807-13. PubMed ID: 12557914
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Role of H+ ATPases in plasma membranes of airway smooth muscle].
    Pacheco G; de Alfonzo RG; de Bécemberg IL; Alfonzo MJ
    Acta Cient Venez; 1993; 44(2):111-9. PubMed ID: 8085404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of Fe-deficiency responses in cucumber (Cucumis sativus L.) roots: involvement of plasma membrane H(+)-ATPase activity.
    Dell'Orto M; Santi S; De Nisi P; Cesco S; Varanini Z; Zocchi G; Pinton R
    J Exp Bot; 2000 Apr; 51(345):695-701. PubMed ID: 10938861
    [TBL] [Abstract][Full Text] [Related]  

  • 14. H+-ATPase activity in selective disruption of H+-K+-ATPase alpha 1 gene of mice under normal and K-depleted conditions.
    Nakamura S
    J Lab Clin Med; 2006 Jan; 147(1):45-51. PubMed ID: 16443004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transmembrane electron transport in sealed and NAD(P)H-loaded right-side-out plasma membrane vesicles isolated from maize (Zea mays L.) roots.
    Menckhoff M; Lüthje S
    J Exp Bot; 2004 Jun; 55(401):1343-9. PubMed ID: 15155782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of phytohormones on the transmembrane translocation of protons in plasma membrane vesicles from tubers of Solanum tuberosum L.
    Ladyzhenskaya EP
    Membr Cell Biol; 2000; 13(5):617-24. PubMed ID: 10987385
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface NADH oxidase of HeLa cells lacks intrinsic membrane binding motifs.
    Morré DJ; Sedlak D; Tang X; Chueh PJ; Geng T; Morré DM
    Arch Biochem Biophys; 2001 Aug; 392(2):251-6. PubMed ID: 11488599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Purification and characterization of a doxorubicin-inhibited NADH-quinone (NADH-ferricyanide) reductase from rat liver plasma membranes.
    Kim C; Crane FL; Faulk WP; Morré DJ
    J Biol Chem; 2002 May; 277(19):16441-7. PubMed ID: 11875069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The antitumor drug, cis diamminedichloro-platinum, inhibits trans plasmalemma electron transport in HeLa cells.
    Sun IL; Crane FL
    Biochem Int; 1984 Sep; 9(3):299-306. PubMed ID: 6542367
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of cell culture time and bone matrix exposure on calmodulin content and ATP-dependent cell membrane acid transport in avian osteoclasts and macrophages.
    Williams JP; Dong SS; Whitaker CH; Jordan SE; Blair HC
    J Cell Physiol; 1996 Dec; 169(3):411-9. PubMed ID: 8952690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.