BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 7505327)

  • 1. Ionophoretic-like properties of ketorolac for calcium.
    Chàvez R; Bravo C; Zazueta C; Pichardo J; Uribe A; Corona N; Reyes-Vivas H; González C; Chàvez E
    J Pharmacol Exp Ther; 1993 Dec; 267(3):1134-9. PubMed ID: 7505327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Ketorolac protection in damage due to myocardial ischemia and reperfusion].
    Pichardo J; Chávez R; Bravo C; Zazueta C; Chávez E
    Arch Inst Cardiol Mex; 1994; 64(4):325-30. PubMed ID: 7840715
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the analgesic and anti-inflammatory activities of ketorolac and its enantiomers in the rat.
    Jett MF; Ramesha CS; Brown CD; Chiu S; Emmett C; Voronin T; Sun T; O'Yang C; Hunter JC; Eglen RM; Johnson RM
    J Pharmacol Exp Ther; 1999 Mar; 288(3):1288-97. PubMed ID: 10027870
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the intracellular Ca(2+) pools involved in the calcium homeostasis in Herpetomonas sp. promastigotes.
    Sodré CL; Moreira BL; Nobrega FB; Gadelha FR; Meyer-Fernandes JR; Dutra PM; Vercesi AE; Lopes AH; Scofano HM; Barrabin H
    Arch Biochem Biophys; 2000 Aug; 380(1):85-91. PubMed ID: 10900136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ketorolac causes the release of methionine-enkephalin in rats.
    Michel RE; Holt JC; Domer FR
    Res Commun Mol Pathol Pharmacol; 1996 Feb; 91(2):249-52. PubMed ID: 8832917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prooxidants open both the mitochondrial permeability transition pore and a low-conductance channel in the inner mitochondrial membrane.
    Kushnareva YE; Sokolove PM
    Arch Biochem Biophys; 2000 Apr; 376(2):377-88. PubMed ID: 10775426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Is the inhibition of oxidative phosphorylation chains in kidney mitochondria responsible for cyclosporine nephrotoxicity?
    Zenatti M; Aupetit B; Ghazzi A; Shechter E; Michel A; Nataf V; Aymard P; Legrand JC
    Transplant Proc; 1988 Jun; 20(3 Suppl 3):700-4. PubMed ID: 3388507
    [No Abstract]   [Full Text] [Related]  

  • 8. Antiinflammatory drug effects on bone repair and remodeling in rabbits.
    Ho ML; Chang JK; Wang GJ
    Clin Orthop Relat Res; 1995 Apr; (313):270-8. PubMed ID: 7641490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Renal failure and hyperkalemia associated with ketorolac tromethamine.
    Pearce CJ; Gonzalez FM; Wallin JD
    Arch Intern Med; 1993 Apr; 153(8):1000-2. PubMed ID: 8481061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ruthenium red-mediated inhibition of large-conductance Ca2+-activated K+ channels in rat pituitary GH3 cells.
    Wu SN; Jan CR; Li HF
    J Pharmacol Exp Ther; 1999 Sep; 290(3):998-1005. PubMed ID: 10454470
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonsteroidal antiinflammatory drugs and a selective cyclooxygenase 2 inhibitor uncouple mitochondria in intact cells.
    Krause MM; Brand MD; Krauss S; Meisel C; Vergin H; Burmester GR; Buttgereit F
    Arthritis Rheum; 2003 May; 48(5):1438-44. PubMed ID: 12746918
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidative phosphorylation and mitochondrial physiology: a critical review of chemiosmotic theory, and reinterpretation by the association-induction hypothesis.
    Ling GN
    Physiol Chem Phys; 1981; 13(1):29-96. PubMed ID: 7022492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intracellular free calcium and mitochondrial membrane potential in ischemia/reperfusion and preconditioning.
    Ylitalo KV; Ala-Rämi A; Liimatta EV; Peuhkurinen KJ; Hassinen IE
    J Mol Cell Cardiol; 2000 Jul; 32(7):1223-38. PubMed ID: 10860765
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Clinical use of ketorolac (ketrodole) for analgesia in the early postoperative period].
    Lebedeva RN; Nikoda VV; Petrov RO
    Anesteziol Reanimatol; 1995; (1):29-31. PubMed ID: 7605030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential inhibition of fracture healing by non-selective and cyclooxygenase-2 selective non-steroidal anti-inflammatory drugs.
    Gerstenfeld LC; Thiede M; Seibert K; Mielke C; Phippard D; Svagr B; Cullinane D; Einhorn TA
    J Orthop Res; 2003 Jul; 21(4):670-5. PubMed ID: 12798067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unaltered hepatic oxidative phosphorylation and mitochondrial permeability transition in wistar rats treated with nimesulide: Relevance for nimesulide toxicity characterization.
    Moreno AJ; Oliveira PJ; Nova CD; Alvaro AR; Moreira RA; Santos SM; Macedo T
    J Biochem Mol Toxicol; 2007; 21(2):53-61. PubMed ID: 17427176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Renal hemodynamic effects of chronic ketorolac tromethamine treatment in aged lean and obese Zucker rats.
    Alavi FK; Zawada ET; Hoff KK
    Clin Nephrol; 1995 May; 43(5):318-23. PubMed ID: 7634547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cepharanthine, an anti-inflammatory drug, suppresses mitochondrial membrane permeability transition.
    Nagano M; Kanno T; Fujita H; Muranaka S; Fujiwara T; Utsumi K
    Physiol Chem Phys Med NMR; 2003; 35(2):131-43. PubMed ID: 15552724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. delta-Aminolevulinic acid-induced synaptosomal Ca2+ uptake and mitochondrial permeabilization.
    Penatti CA; Bechara EJ; Demasi M
    Arch Biochem Biophys; 1996 Nov; 335(1):53-60. PubMed ID: 8914834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro interaction of nonsteroidal anti-inflammatory drugs on oxidative phosphorylation of rat kidney mitochondria: respiration and ATP synthesis.
    Mingatto FE; Santos AC; Uyemura SA; Jordani MC; Curti C
    Arch Biochem Biophys; 1996 Oct; 334(2):303-8. PubMed ID: 8900405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.