These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 7505379)

  • 1. Direct ribosomal RNA sequencing for phylogenetic studies.
    Bachellerie JP; Qu LH
    Methods Enzymol; 1993; 224():349-57. PubMed ID: 7505379
    [No Abstract]   [Full Text] [Related]  

  • 2. Phylogenetic identification of uncultured pathogens using ribosomal RNA sequences.
    Schmidt TM; Relman DA
    Methods Enzymol; 1994; 235():205-22. PubMed ID: 7520119
    [No Abstract]   [Full Text] [Related]  

  • 3. Reverse transcriptase sequencing of ribosomal RNA for phylogenetic analysis.
    Lane DJ; Field KG; Olsen GJ; Pace NR
    Methods Enzymol; 1988; 167():138-44. PubMed ID: 2467178
    [No Abstract]   [Full Text] [Related]  

  • 4. Mapping of the 13 pseudouridine residues in Saccharomyces cerevisiae small subunit ribosomal RNA to nucleotide resolution.
    Bakin A; Ofengand J
    Nucleic Acids Res; 1995 Aug; 23(16):3290-4. PubMed ID: 7545286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of rRNA secondary structure in phylogenetic studies to identify homologous positions: an example of alignment and data presentation from the frogs.
    Kjer KM
    Mol Phylogenet Evol; 1995 Sep; 4(3):314-30. PubMed ID: 8845967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polymerase chain reaction-mediated mutagenesis in sequences resistant to homogeneous amplification.
    Nazar RN; Abeyrathne PD; Intine RV
    Methods Mol Biol; 2002; 182():117-26. PubMed ID: 11768959
    [No Abstract]   [Full Text] [Related]  

  • 7. Rapid determination of bacterial ribosomal RNA sequences by direct sequencing of enzymatically amplified DNA.
    Böttger EC
    FEMS Microbiol Lett; 1989 Nov; 53(1-2):171-6. PubMed ID: 2482222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterizing regions of ambiguous alignment caused by the expansion and contraction of hairpin-stem loops in ribosomal RNA molecules.
    Gillespie JJ
    Mol Phylogenet Evol; 2004 Dec; 33(3):936-43. PubMed ID: 15522814
    [No Abstract]   [Full Text] [Related]  

  • 9. Exploring the mechanism of the peptidyl transfer reaction by chemical footprinting.
    Strobel SA; Muth GW; Chen L
    Cold Spring Harb Symp Quant Biol; 2001; 66():109-17. PubMed ID: 12762013
    [No Abstract]   [Full Text] [Related]  

  • 10. The RNA of RNase MRP is required for normal processing of ribosomal RNA.
    Chu S; Archer RH; Zengel JM; Lindahl L
    Proc Natl Acad Sci U S A; 1994 Jan; 91(2):659-63. PubMed ID: 8290578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unique arrangement of coding sequences for 5 S, 5.8 S, 18 S and 25 S ribosomal RNA in Saccharomyces cerevisiae as determined by R-loop and hybridization analysis.
    Philippsen P; Thomas M; Kramer RA; Davis RW
    J Mol Biol; 1978 Aug; 123(3):387-404. PubMed ID: 357737
    [No Abstract]   [Full Text] [Related]  

  • 12. Preparation of extracts and assay of ribosomal RNA maturation in Escherichia coli.
    Srivastava AK; Schlessinger D
    Methods Enzymol; 1990; 181():355-66. PubMed ID: 2199757
    [No Abstract]   [Full Text] [Related]  

  • 13. The phylogenetically conserved doublet tertiary interaction in domain III of the large subunit rRNA is crucial for ribosomal protein binding.
    Kooi EA; Rutgers CA; Mulder A; Van't Riet J; Venema J; Raué HA
    Proc Natl Acad Sci U S A; 1993 Jan; 90(1):213-6. PubMed ID: 8419926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phylogenetic relationship of Sarcocystis neurona to other members of the family Sarcocystidae based on small subunit ribosomal RNA gene sequence.
    Fenger CK; Granstrom DE; Langemeier JL; Gajadhar A; Cothran G; Tramontin RR; Stamper S; Dubey JP
    J Parasitol; 1994 Dec; 80(6):966-75. PubMed ID: 7799170
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure analysis of the 5' external transcribed spacer of the precursor ribosomal RNA from Saccharomyces cerevisiae.
    Yeh LC; Lee JC
    J Mol Biol; 1992 Dec; 228(3):827-39. PubMed ID: 1469716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Primary and secondary structure of the small-subunit ribosomal RNA of the naked, marine amoeba Vannella anglica: phylogenetic implications.
    Sims GP; Rogerson A; Aitken R
    J Mol Evol; 1999 Jun; 48(6):740-9. PubMed ID: 10229578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Database on the structure of large ribosomal subunit RNA.
    De Rijk P; Van de Peer Y; De Wachter R
    Nucleic Acids Res; 1996 Jan; 24(1):92-7. PubMed ID: 8594610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Divergent transcription in the yeast ribosomal RNA coding region as shown by hybridization to separated strands and sequence analysis of cloned DNA.
    Kramer RA; Philippsen P; Davis RW
    J Mol Biol; 1978 Aug; 123(3):405-16. PubMed ID: 357738
    [No Abstract]   [Full Text] [Related]  

  • 19. Nucleotide sequence of Physarum polycephalum 5.8S rRNA gene and its flanking regions.
    Otsuka T; Nomiyama H; Sakaki Y; Takagi Y
    Nucleic Acids Res; 1982 Apr; 10(7):2379-85. PubMed ID: 6283479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The nucleotide sequence of the putative transcription initiation site of a cloned ribosomal RNA gene of the mouse.
    Urano Y; Kominami R; Mishima Y; Muramatsu M
    Nucleic Acids Res; 1980 Dec; 8(24):6043-58. PubMed ID: 6162156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.