These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 7505699)

  • 21. Diversity in the axonal transport of structural proteins: major differences between optic and spinal axons in the rat.
    McQuarrie IG; Brady ST; Lasek RJ
    J Neurosci; 1986 Jun; 6(6):1593-605. PubMed ID: 2423662
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Axonal transport of cytoskeletal proteins in oculomotor axons and their residence times in the axon terminals.
    Paggi P; Lasek RJ
    J Neurosci; 1987 Aug; 7(8):2397-411. PubMed ID: 2441008
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Selective cholinergic depletion of the hippocampus spares both behaviorally induced Arc transcription and spatial learning and memory.
    Fletcher BR; Baxter MG; Guzowski JF; Shapiro ML; Rapp PR
    Hippocampus; 2007; 17(3):227-34. PubMed ID: 17286278
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Intracerebroventricular kainic acid administration in adult rat alters hippocampal calbindin and non-phosphorylated neurofilament expression.
    Shetty AK; Turner DA
    J Comp Neurol; 1995 Dec; 363(4):581-599. PubMed ID: 8847419
    [TBL] [Abstract][Full Text] [Related]  

  • 25. C-Terminal region of teneurin-1 co-localizes with dystroglycan and modulates cytoskeletal organization through an extracellular signal-regulated kinase-dependent stathmin- and filamin A-mediated mechanism in hippocampal cells.
    Chand D; Song L; deLannoy L; Barsyte-Lovejoy D; Ackloo S; Boutros PC; Evans K; Belsham DD; Lovejoy DA
    Neuroscience; 2012 Sep; 219():255-70. PubMed ID: 22698694
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Neurotrophin-3 enhances neurite outgrowth in cultured hippocampal pyramidal neurons.
    Morfini G; DiTella MC; Feiguin F; Carri N; Cáceres A
    J Neurosci Res; 1994 Oct; 39(2):219-32. PubMed ID: 7837290
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stable and dynamic forms of cytoskeletal proteins in slow axonal transport.
    Tashiro T; Komiya Y
    J Neurosci; 1989 Mar; 9(3):760-8. PubMed ID: 2926480
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Distribution of calbindin D28k immunoreactive cells and fibers in the monkey hippocampus, subicular complex and entorhinal cortex. A light and electron microscopic study.
    Seress L; Léránth C; Frotscher M
    J Hirnforsch; 1994; 35(4):473-86. PubMed ID: 7884210
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transport of cytoskeletal elements from parent axons into regenerating daughter axons.
    McQuarrie IG; Lasek RJ
    J Neurosci; 1989 Feb; 9(2):436-46. PubMed ID: 2493076
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Posttranslational modifications of nerve cytoskeletal proteins in experimental diabetes.
    McLean WG; Pekiner C; Cullum NA; Casson IF
    Mol Neurobiol; 1992; 6(2-3):225-37. PubMed ID: 1476675
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Deafferentation removes calretinin immunopositive terminals, but does not induce degeneration of calbindin D-28k and parvalbumin expressing neurons in the hippocampus of adult rats.
    Beck KD; Hefti F; Widmer HR
    J Neurosci Res; 1994 Oct; 39(3):298-304. PubMed ID: 7869422
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regional and laminar specificity of kainate-stimulated cobalt uptake in the rat hippocampal formation.
    Toomim CS; Millington WR
    J Comp Neurol; 1998 Dec; 402(2):141-54. PubMed ID: 9845239
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Two-dimensional neural activity mapping of the entire population of hippocampal CA1 pyramidal cells responding to fear conditioning.
    Inoue K; Fukazawa Y; Ogura A; Inokuchi K
    Neurosci Res; 2005 Apr; 51(4):417-25. PubMed ID: 15740804
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Organization and slow axonal transport of cytoskeletal proteins under normal and regenerating conditions.
    Tashiro T; Komiya Y
    Mol Neurobiol; 1992; 6(2-3):301-11. PubMed ID: 1282336
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phosphorylation-dependent immunoreactivity of neurofilaments and the rate of slow axonal transport in the central and peripheral axons of the rat dorsal root ganglion.
    Archer DR; Watson DF; Griffin JW
    J Neurochem; 1994 Mar; 62(3):1119-25. PubMed ID: 8113799
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neurofilament and tubulin transport slows along the course of mature motor axons.
    Watson DF; Hoffman PN; Fittro KP; Griffin JW
    Brain Res; 1989 Jan; 477(1-2):225-32. PubMed ID: 2467723
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cytotypic differences in the protein composition of the axonally transported cytoskeleton in mammalian neurons.
    Oblinger MM; Brady ST; McQuarrie IG; Lasek RJ
    J Neurosci; 1987 Feb; 7(2):453-62. PubMed ID: 2434629
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Slow components of axonal transport: two cytoskeletal networks.
    Black MM; Lasek RJ
    J Cell Biol; 1980 Aug; 86(2):616-23. PubMed ID: 6156946
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Slowly migrating axonal polypeptides. Inequalities in their rate and amount of transport between two branches of bifurcating axons.
    Mori H; Komiya Y; Kurokawa M
    J Cell Biol; 1979 Jul; 82(1):174-84. PubMed ID: 90050
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Differential axonal transport of isotubulins in the motor axons of the rat sciatic nerve.
    Denoulet P; Filliatreau G; de Néchaud B; Gros F; Di Giamberardino L
    J Cell Biol; 1989 Mar; 108(3):965-71. PubMed ID: 2921287
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.