BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 7506105)

  • 1. Affinity gel electrophoresis of nucleic acids. Specific base- and shape-selective separation of DNA and RNA on polyacrylamide-nucleobase conjugated gel.
    Yashima E; Suehiro N; Miyauchi N; Akashi M
    J Chromatogr A; 1993 Nov; 654(1):159-66. PubMed ID: 7506105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Affinity gel electrophoresis of nucleic acids. Nucleobase-selective separation of DNA and RNA on agarose-poly(9-vinyladenine) conjugated gel.
    Yashima E; Suehiro N; Miyauchi N; Akashi M
    J Chromatogr A; 1993 Nov; 654(1):151-8. PubMed ID: 7506104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specific base recognition of oligodeoxynucleotides by capillary affinity gel electrophoresis using polyacrylamide-poly(9-vinyladenine) conjugated gel.
    Baba Y; Tsuhako M; Sawa T; Akashi M; Yashima E
    Anal Chem; 1992 Sep; 64(17):1920-5. PubMed ID: 1416043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectroscopic study of the interaction between poly-(9-vinyladenine) and single or multistrand RNA.
    Yashima E; Tajima T; Miyauchi N; Akashi M
    Biopolymers; 1992 Jul; 32(7):811-7. PubMed ID: 1382649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of urea concentration on the base-specific separation of oligodeoxynucleotides in capillary affinity gel electrophoresis.
    Baba Y; Tsuhako M; Sawa T; Akashi M
    J Chromatogr A; 1993 Oct; 652(1):93-9. PubMed ID: 8281264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recognition of (d(TTTATT) and d(TTATTT) by capillary affinity gel electrophoresis (CAGE) using poly(9-vinyladenine)-polyacrylamide conjugated gel.
    Sawa T; Akashi M; Baba Y; Tsuhako M
    Nucleic Acids Symp Ser; 1992; (27):51-2. PubMed ID: 1289824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A versatile microfabricated platform for electrophoresis of double- and single-stranded DNA.
    Ugaz VM; Lin R; Srivastava N; Burke DT; Burns MA
    Electrophoresis; 2003 Jan; 24(1-2):151-7. PubMed ID: 12652585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-performance affinity chromatography of oligonucleotides on nucleic acid analogue immobilized silica gel columns.
    Yashima E; Shiiba T; Sawa T; Miyauchi N; Akashi M
    J Chromatogr; 1992 Jun; 603(1-2):111-9. PubMed ID: 1322922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Curved DNA molecules migrate anomalously slowly in polyacrylamide gels even at zero gel concentration.
    Stellwagen NC
    Electrophoresis; 2006 Mar; 27(5-6):1163-8. PubMed ID: 16440397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polyacrylamide Gel Electrophoresis.
    Green MR; Sambrook J
    Cold Spring Harb Protoc; 2020 Dec; 2020(12):. PubMed ID: 33262236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of mismatch positions on the DNA-polyvinyladenine hybrids using capillary affinity gel electrophoresis.
    Baba Y; Tomisaki R; Tsuhako M; Sawa T; Inami Y; Kishida A; Akashi M
    Nucleic Acids Symp Ser; 1993; (29):81-2. PubMed ID: 8247803
    [No Abstract]   [Full Text] [Related]  

  • 12. Denaturing urea polyacrylamide gel electrophoresis (Urea PAGE).
    Summer H; Grämer R; Dröge P
    J Vis Exp; 2009 Oct; (32):. PubMed ID: 19865070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Do DNA gel electrophoretic mobilities extrapolate to the free-solution mobility of DNA at zero gel concentration?
    Strutz K; Stellwagen NC
    Electrophoresis; 1998 May; 19(5):635-42. PubMed ID: 9629889
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of a single base mismatch in double-stranded DNA by electrophoresis on uncrosslinked polyacrylamide gel.
    Pulyaeva H; Zakharov SF; Garner MM; Chrambach A
    Electrophoresis; 1994; 15(8-9):1095-100. PubMed ID: 7859713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Matrix effects suggest an important influence of DNA-polyacrylamide interactions on the electrophoretic mobility of DNA.
    Niederweis M; Lederer T; Hillen W
    J Biol Chem; 1994 Apr; 269(13):10156-62. PubMed ID: 8144517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polyacrylamide temperature gradient gel electrophoresis.
    Viglasky V
    Methods Mol Biol; 2013; 1054():159-71. PubMed ID: 23913291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of polyacrylamide gel pore size from Ferguson plots of linear DNA fragments. II. Comparison of gels with different crosslinker concentrations, added agarose and added linear polyacrylamide.
    Holmes DL; Stellwagen NC
    Electrophoresis; 1991 Sep; 12(9):612-9. PubMed ID: 1752240
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A mechanically strengthened polyacrylamide gel matrix fully compatible with electrophoresis of proteins and nucleic acids.
    Pushparajan C; Goswami SK; McAdam CJ; Hanton LR; Dearden PK; Moratti SC; Cridge AG
    Electrophoresis; 2018 Mar; 39(5-6):824-832. PubMed ID: 29125656
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using in situ rheology to characterize the microstructure in photopolymerized polyacrylamide gels for DNA electrophoresis.
    Wang J; Ugaz VM
    Electrophoresis; 2006 Sep; 27(17):3349-58. PubMed ID: 16892481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA mobility anomalies are determined primarily by polyacrylamide gel concentration, not gel pore size.
    Stellwagen NC
    Electrophoresis; 1997 Jan; 18(1):34-44. PubMed ID: 9059818
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.