These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 750631)

  • 1. A fully coupled transient excited state model for the sodium channel. II. Implications for action potential generation, threshold, repetitive firing, and accommodation.
    Jakobsson E
    J Math Biol; 1978 Aug; 6(3):235-48. PubMed ID: 750631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new double-chamber model of ion channels. Beyond the Hodgkin and Huxley model.
    Dołowy K
    Cell Mol Biol Lett; 2003; 8(3):749-75. PubMed ID: 12949615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural repetitive firing: modifications of the Hodgkin-Huxley axon suggested by experimental results from crustacean axons.
    Connor JA; Walter D; McKown R
    Biophys J; 1977 Apr; 18(1):81-102. PubMed ID: 856318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A fully coupled transient excited state model for the sodium channel. I. Conductance in the voltage clamped case.
    Jakobsson E
    J Math Biol; 1978 Mar; 5(2):121-42. PubMed ID: 731134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computer simulations of high-pass filtering in zebrafish larval muscle fibres.
    Buckingham SD; Ali DW
    J Exp Biol; 2005 Aug; 208(Pt 16):3055-63. PubMed ID: 16081604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The standard Hodgkin-Huxley model and squid axons in reduced external Ca++ fail to accommodate to slowly rising currents.
    Jakobsson E; Guttman R
    Biophys J; 1980 Aug; 31(2):293-7. PubMed ID: 7260290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The contribution of resurgent sodium current to high-frequency firing in Purkinje neurons: an experimental and modeling study.
    Khaliq ZM; Gouwens NW; Raman IM
    J Neurosci; 2003 Jun; 23(12):4899-912. PubMed ID: 12832512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective modification of sodium channel gating in lobster axons by 2, 4, 6-trinitrophenol: Evidence for two inactivation mechanisms.
    Oxford GS; Pooler JP
    J Gen Physiol; 1975 Dec; 66(6):765-79. PubMed ID: 1194889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling state-dependent inactivation of membrane currents.
    Marom S; Abbott LF
    Biophys J; 1994 Aug; 67(2):515-20. PubMed ID: 7524708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of the leak conductance in the squid giant axon.
    Seely J; Crotty P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 1):021906. PubMed ID: 20866836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Excitability of the Clay model for squid giant axon.
    Pakdaman K; Kauffmann A; Mestivier D
    Biosystems; 2003 Sep; 71(1-2):157-67. PubMed ID: 14568216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modification of sodium channel gating in frog myelinated nerve fibres by Centruroides sculpturatus scorpion venom.
    Cahalan MD
    J Physiol; 1975 Jan; 244(2):511-34. PubMed ID: 1079869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of sodium channel block in crayfish giant axons by 711389-S, a new antiarrhythmic drug.
    Muramatsu I; Noda M; Nishio M; Fujiwara M
    J Pharmacol Exp Ther; 1987 Jul; 242(1):269-76. PubMed ID: 2441025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sodium and potassium currents involved in action potential propagation in normal bovine lactotrophs.
    Cobbett P; Ingram CD; Mason WT
    J Physiol; 1987 Nov; 392():273-99. PubMed ID: 2451724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sodium and potassium conductance changes during a membrane action potential.
    Bezanilla F; Rojas E; Taylor RE
    J Physiol; 1970 Dec; 211(3):729-51. PubMed ID: 5505231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Na+ conductance and the threshold for repetitive neuronal firing.
    Matzner O; Devor M
    Brain Res; 1992 Nov; 597(1):92-8. PubMed ID: 1335824
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative description of sodium and potassium currents and computed action potentials in Myxicola giant axons.
    Goldman L; Schauf CL
    J Gen Physiol; 1973 Mar; 61(3):361-84. PubMed ID: 4689623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Slow Na+ channel inactivation and bursting discharge in a simple model axon: implications for neuropathic pain.
    Elliott JR
    Brain Res; 1997 Apr; 754(1-2):221-6. PubMed ID: 9134979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sodium and calcium currents in acutely dissociated neurons from rat suprachiasmatic nucleus.
    Huang RC
    J Neurophysiol; 1993 Oct; 70(4):1692-703. PubMed ID: 7904302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of gated membrane currents and mechanisms of firing control in the rapidly adapting lobster stretch receptor neurone.
    Edman A; Gestrelius S; Grampp W
    J Physiol; 1987 Mar; 384():649-69. PubMed ID: 3656158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.