These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 7506342)

  • 1. Fast axonal diffusion of 3000 molecular weight dextran amines.
    Fritzsch B
    J Neurosci Methods; 1993 Oct; 50(1):95-103. PubMed ID: 7506342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescent dextrans as sensitive anterograde neuroanatomical tracers: applications and pitfalls.
    Nance DM; Burns J
    Brain Res Bull; 1990 Jul; 25(1):139-45. PubMed ID: 1698517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical imaging of neuronal activity in tissue labeled by retrograde transport of Calcium Green Dextran.
    McPherson DR; McClellan AD; O'Donovan MJ
    Brain Res Brain Res Protoc; 1997 May; 1(2):157-64. PubMed ID: 9385080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescent dextran-amines used as axonal tracers in the nervous system of the chicken embryo.
    Glover JC; Petursdottir G; Jansen JK
    J Neurosci Methods; 1986 Nov; 18(3):243-54. PubMed ID: 2432362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequential double labelling with different fluorescent dyes coupled to dextran amines as a tool to estimate the accuracy of tracer application and of regeneration.
    Fritzsch B; Sonntag R
    J Neurosci Methods; 1991 Aug; 39(1):9-17. PubMed ID: 1722269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of Lysine and TRITC Conjugation on the Size and Structure of Dextran Nanoconjugates with Potential for Biomolecule Delivery to Neurons.
    Zeini D; Glover JC; Knudsen KD; Nyström B
    ACS Appl Bio Mater; 2021 Sep; 4(9):6832-6842. PubMed ID: 35006983
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved retrograde axonal transport and subsequent visualization of tetramethylrhodamine (TMR) -dextran amine by means of an acidic injection vehicle and antibodies against TMR.
    Kaneko T; Saeki K; Lee T; Mizuno N
    J Neurosci Methods; 1996 Apr; 65(2):157-65. PubMed ID: 8740593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regeneration of descending projections in Xenopus laevis tadpole spinal cord demonstrated by retrograde double labeling.
    Gibbs KM; Szaro BG
    Brain Res; 2006 May; 1088(1):68-72. PubMed ID: 16626660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracellular labeling of cat spinal neurons using a tetramethylrhodamine-dextran amine conjugate.
    Carr PA; Noga BR; Nance DM; Jordan LM
    Brain Res Bull; 1994; 34(5):447-51. PubMed ID: 7521780
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impaired axonal transport and altered axolemmal permeability occur in distinct populations of damaged axons following traumatic brain injury.
    Stone JR; Okonkwo DO; Dialo AO; Rubin DG; Mutlu LK; Povlishock JT; Helm GA
    Exp Neurol; 2004 Nov; 190(1):59-69. PubMed ID: 15473980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo anterograde and retrograde axonal transport of the fluorescent rhodamine-dextran-amine, Fluoro-Ruby, within the CNS.
    Schmued L; Kyriakidis K; Heimer L
    Brain Res; 1990 Aug; 526(1):127-34. PubMed ID: 1706635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescent tracers as potential candidates for double labeling of descending brain neurons in larval lamprey.
    Zhang L; McClellan AD
    J Neurosci Methods; 1998 Nov; 85(1):51-62. PubMed ID: 9874141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dextran retention in the rat brain following release from a polymer implant.
    Dang W; Saltzman WM
    Biotechnol Prog; 1992; 8(6):527-32. PubMed ID: 1282018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial and temporal expression of phosphorylated and non-phosphorylated forms of neurofilament proteins in the developing nervous system of Xenopus laevis.
    Szaro BG; Lee VM; Gainer H
    Brain Res Dev Brain Res; 1989 Jul; 48(1):87-103. PubMed ID: 2502330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved fluorescent compounds for tracing cell lineage.
    Gimlich RL; Braun J
    Dev Biol; 1985 Jun; 109(2):509-14. PubMed ID: 2581834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biotinylated dextran amine as an anterograde tracer for single- and double-labeling studies.
    Veenman CL; Reiner A; Honig MG
    J Neurosci Methods; 1992 Mar; 41(3):239-54. PubMed ID: 1381034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early development of dorsal column-medial lemniscal projections in the clawed toad, Xenopus laevis.
    Múñoz A; de Boer-Van Huizen R; Bergervoet-Vernooy I; ten Donkelaar HJ
    Brain Res Dev Brain Res; 1993 Aug; 74(2):291-4. PubMed ID: 7691436
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fiber pathways and positional changes in efferent perikarya of 2.5- to 7-day chick embryos as revealed with DiI and dextran amines.
    Fritzsch B; Christensen MA; Nichols DH
    J Neurobiol; 1993 Nov; 24(11):1481-99. PubMed ID: 7506749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Motor recovery and anatomical evidence of axonal regrowth in spinal cord-repaired adult rats.
    Lee YS; Lin CY; Robertson RT; Hsiao I; Lin VW
    J Neuropathol Exp Neurol; 2004 Mar; 63(3):233-45. PubMed ID: 15055447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biotin-dextran: a sensitive anterograde tracer for neuroanatomic studies in rat and monkey.
    Brandt HM; Apkarian AV
    J Neurosci Methods; 1992; 45(1-2):35-40. PubMed ID: 1283432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.