BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

337 related articles for article (PubMed ID: 7506418)

  • 1. Functional communication in the recognition of tRNA by Escherichia coli glutaminyl-tRNA synthetase.
    Rogers MJ; Adachi T; Inokuchi H; Söll D
    Proc Natl Acad Sci U S A; 1994 Jan; 91(1):291-5. PubMed ID: 7506418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Connecting anticodon recognition with the active site of Escherichia coli glutaminyl-tRNA synthetase.
    Weygand-Durasević I; Rogers MJ; Söll D
    J Mol Biol; 1994 Jul; 240(2):111-8. PubMed ID: 8027995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acceptor end binding domain interactions ensure correct aminoacylation of transfer RNA.
    Weygand-Durasević I; Schwob E; Söll D
    Proc Natl Acad Sci U S A; 1993 Mar; 90(5):2010-4. PubMed ID: 7680483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selectivity and specificity in the recognition of tRNA by E coli glutaminyl-tRNA synthetase.
    Rogers MJ; Weygand-Durasević I; Schwob E; Sherman JM; Rogers KC; Adachi T; Inokuchi H; Söll D
    Biochimie; 1993; 75(12):1083-90. PubMed ID: 8199243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Switching tRNA(Gln) identity from glutamine to tryptophan.
    Rogers MJ; Adachi T; Inokuchi H; Söll D
    Proc Natl Acad Sci U S A; 1992 Apr; 89(8):3463-7. PubMed ID: 1565639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of transfer RNA tertiary structure on aminoacylation efficiency by glutaminyl and cysteinyl-tRNA synthetases.
    Sherlin LD; Bullock TL; Newberry KJ; Lipman RS; Hou YM; Beijer B; Sproat BS; Perona JJ
    J Mol Biol; 2000 Jun; 299(2):431-46. PubMed ID: 10860750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discrimination among tRNAs intermediate in glutamate and glutamine acceptor identity.
    Rogers KC; Söll D
    Biochemistry; 1993 Dec; 32(51):14210-9. PubMed ID: 7505112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anticodon and acceptor stem nucleotides in tRNA(Gln) are major recognition elements for E. coli glutaminyl-tRNA synthetase.
    Jahn M; Rogers MJ; Söll D
    Nature; 1991 Jul; 352(6332):258-60. PubMed ID: 1857423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional connectivity between tRNA binding domains in glutaminyl-tRNA synthetase.
    Sherman JM; Thomann HU; Söll D
    J Mol Biol; 1996 Mar; 256(5):818-28. PubMed ID: 8601833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of E. coli glutaminyl-tRNA synthetase complexed with tRNA(Gln) and ATP at 2.8 A resolution.
    Rould MA; Perona JJ; Söll D; Steitz TA
    Science; 1989 Dec; 246(4934):1135-42. PubMed ID: 2479982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selection of a 'minimal' glutaminyl-tRNA synthetase and the evolution of class I synthetases.
    Schwob E; Söll D
    EMBO J; 1993 Dec; 12(13):5201-8. PubMed ID: 7505222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic analysis of functional connectivity between substrate recognition domains of Escherichia coli glutaminyl-tRNA synthetase.
    Kitabatake M; Ibba M; Hong KW; Söll D; Inokuchi H
    Mol Gen Genet; 1996 Oct; 252(6):717-22. PubMed ID: 8917315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transfer RNA-dependent cognate amino acid recognition by an aminoacyl-tRNA synthetase.
    Hong KW; Ibba M; Weygand-Durasevic I; Rogers MJ; Thomann HU; Söll D
    EMBO J; 1996 Apr; 15(8):1983-91. PubMed ID: 8617245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recognition of bases in Escherichia coli tRNA(Gln) by glutaminyl-tRNA synthetase: a complete identity set.
    Hayase Y; Jahn M; Rogers MJ; Sylvers LA; Koizumi M; Inoue H; Ohtsuka E; Söll D
    EMBO J; 1992 Nov; 11(11):4159-65. PubMed ID: 1396597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and mechanistic basis for enhanced translational efficiency by 2-thiouridine at the tRNA anticodon wobble position.
    Rodriguez-Hernandez A; Spears JL; Gaston KW; Limbach PA; Gamper H; Hou YM; Kaiser R; Agris PF; Perona JJ
    J Mol Biol; 2013 Oct; 425(20):3888-906. PubMed ID: 23727144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of the suppression efficiency and amino acid identity of an artificial yeast amber isoleucine transfer RNA in Escherichia coli by a G-U pair in the anticodon stem.
    Büttcher V; Senger B; Schumacher S; Reinbolt J; Fasiolo F
    Biochem Biophys Res Commun; 1994 Apr; 200(1):370-7. PubMed ID: 8166708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural basis for misaminoacylation by mutant E. coli glutaminyl-tRNA synthetase enzymes.
    Perona JJ; Swanson RN; Rould MA; Steitz TA; Söll D
    Science; 1989 Dec; 246(4934):1152-4. PubMed ID: 2686030
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutant enzymes and tRNAs as probes of the glutaminyl-tRNA synthetase: tRNA(Gln) interaction.
    Englisch-Peters S; Conley J; Plumbridge J; Leptak C; Söll D; Rogers MJ
    Biochimie; 1991 Dec; 73(12):1501-8. PubMed ID: 1725262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deinococcus glutaminyl-tRNA synthetase is a chimer between proteins from an ancient and the modern pathways of aminoacyl-tRNA formation.
    Deniziak M; Sauter C; Becker HD; Paulus CA; Giegé R; Kern D
    Nucleic Acids Res; 2007; 35(5):1421-31. PubMed ID: 17284460
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional idiosyncrasies of tRNA isoacceptors in cognate and noncognate aminoacylation systems.
    Fender A; Sissler M; Florentz C; Giegé R
    Biochimie; 2004 Jan; 86(1):21-9. PubMed ID: 14987797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.