These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

337 related articles for article (PubMed ID: 7506418)

  • 21. The recognition of E. coli glutamine tRNA by glutaminyl-tRNA synthetase.
    Rogers MJ; Weygand-Durasević I; Schwob E; Sherman JM; Rogers KC; Thomann HU; Sylvers LA; Ohtsuka E; Inokuchi H; Söll D
    Nucleic Acids Symp Ser; 1993; (29):211-3. PubMed ID: 7504247
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rational design and directed evolution of a bacterial-type glutaminyl-tRNA synthetase precursor.
    Guo LT; Helgadóttir S; Söll D; Ling J
    Nucleic Acids Res; 2012 Sep; 40(16):7967-74. PubMed ID: 22661575
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of an 'orthogonal' suppressor tRNA derived from E. coli tRNA2(Gln).
    Liu DR; Magliery TJ; Schultz PG
    Chem Biol; 1997 Sep; 4(9):685-91. PubMed ID: 9331409
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The role of the catalytic domain of E. coli GluRS in tRNAGln discrimination.
    Dasgupta S; Saha R; Dey C; Banerjee R; Roy S; Basu G
    FEBS Lett; 2009 Jun; 583(12):2114-20. PubMed ID: 19481543
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Coevolution of specificity determinants in eukaryotic glutamyl- and glutaminyl-tRNA synthetases.
    Hadd A; Perona JJ
    J Mol Biol; 2014 Oct; 426(21):3619-33. PubMed ID: 25149203
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Recognition of tRNAs by aminoacyl-tRNA synthetases: Escherichia coli tRNAMet and E. coli methionyl-tRNA synthetase.
    Schulman LH; Pelka H
    Fed Proc; 1984 Dec; 43(15):2977-80. PubMed ID: 6389181
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interactions between tRNA identity nucleotides and their recognition sites in glutaminyl-tRNA synthetase determine the cognate amino acid affinity of the enzyme.
    Ibba M; Hong KW; Sherman JM; Sever S; Söll D
    Proc Natl Acad Sci U S A; 1996 Jul; 93(14):6953-8. PubMed ID: 8692925
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Direct analysis of aminoacylation levels of tRNAs in vivo. Application to studying recognition of Escherichia coli initiator tRNA mutants by glutaminyl-tRNA synthetase.
    Varshney U; Lee CP; RajBhandary UL
    J Biol Chem; 1991 Dec; 266(36):24712-8. PubMed ID: 1761566
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evolution of the Glx-tRNA synthetase family: the glutaminyl enzyme as a case of horizontal gene transfer.
    Lamour V; Quevillon S; Diriong S; N'Guyen VC; Lipinski M; Mirande M
    Proc Natl Acad Sci U S A; 1994 Aug; 91(18):8670-4. PubMed ID: 8078941
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transfer RNA mischarging mediated by a mutant Escherichia coli glutaminyl-tRNA synthetase.
    Inokuchi H; Hoben P; Yamao F; Ozeki H; Söll D
    Proc Natl Acad Sci U S A; 1984 Aug; 81(16):5076-80. PubMed ID: 6382258
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Misaminoacylation by glutaminyl-tRNA synthetase: relaxed specificity in wild-type and mutant enzymes.
    Hoben P; Uemura H; Yamao F; Cheung A; Swanson R; Sumner-Smith M; Söll D
    Fed Proc; 1984 Dec; 43(15):2972-6. PubMed ID: 6389180
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Suppression of amber codons in vivo as evidence that mutants derived from Escherichia coli initiator tRNA can act at the step of elongation in protein synthesis.
    Seong BL; Lee CP; RajBhandary UL
    J Biol Chem; 1989 Apr; 264(11):6504-8. PubMed ID: 2649502
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nucleotides that determine Escherichia coli tRNA(Arg) and tRNA(Lys) acceptor identities revealed by analyses of mutant opal and amber suppressor tRNAs.
    McClain WH; Foss K; Jenkins RA; Schneider J
    Proc Natl Acad Sci U S A; 1990 Dec; 87(23):9260-4. PubMed ID: 2251270
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Glutaminyl-tRNA synthetase: from genetics to molecular recognition.
    Ibba M; Hong KW; Söll D
    Genes Cells; 1996 May; 1(5):421-7. PubMed ID: 9078373
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Glu-Q-tRNA(Asp) synthetase coded by the yadB gene, a new paralog of aminoacyl-tRNA synthetase that glutamylates tRNA(Asp) anticodon.
    Blaise M; Becker HD; Lapointe J; Cambillau C; Giegé R; Kern D
    Biochimie; 2005; 87(9-10):847-61. PubMed ID: 16164993
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Switching the amino acid specificity of an aminoacyl-tRNA synthetase.
    Agou F; Quevillon S; Kerjan P; Mirande M
    Biochemistry; 1998 Aug; 37(32):11309-14. PubMed ID: 9698378
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The terminal adenosine of tRNA(Gln) mediates tRNA-dependent amino acid recognition by glutaminyl-tRNA synthetase.
    Liu J; Ibba M; Hong KW; Söll D
    Biochemistry; 1998 Jul; 37(27):9836-42. PubMed ID: 9657697
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The importance of tRNA backbone-mediated interactions with synthetase for aminoacylation.
    McClain WH; Schneider J; Bhattacharya S; Gabriel K
    Proc Natl Acad Sci U S A; 1998 Jan; 95(2):460-5. PubMed ID: 9435214
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Alternative design of a tRNA core for aminoacylation.
    Christian T; Lipman RS; Evilia C; Hou YM
    J Mol Biol; 2000 Nov; 303(4):503-14. PubMed ID: 11054287
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Competition of aminoacyl-tRNA synthetases for tRNA ensures the accuracy of aminoacylation.
    Sherman JM; Rogers MJ; Söll D
    Nucleic Acids Res; 1992 Jun; 20(11):2847-52. PubMed ID: 1377381
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.