These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 7506418)

  • 61. Aptamer redesigned tRNA is nonfunctional and degraded in cells.
    Lee D; McClain WH
    RNA; 2004 Jan; 10(1):7-11. PubMed ID: 14681579
    [TBL] [Abstract][Full Text] [Related]  

  • 62. C-terminal peptide appendix in a class I tRNA synthetase needed for acceptor-helix contacts and microhelix aminoacylation.
    Kim S; Landro JA; Gale AJ; Schimmel P
    Biochemistry; 1993 Dec; 32(48):13026-31. PubMed ID: 8241156
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Trans-kingdom rescue of Gln-tRNAGln synthesis in yeast cytoplasm and mitochondria.
    Liao CC; Lin CH; Chen SJ; Wang CC
    Nucleic Acids Res; 2012 Oct; 40(18):9171-81. PubMed ID: 22821561
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Recognition of tRNA(Cys) by Escherichia coli cysteinyl-tRNA synthetase.
    Komatsoulis GA; Abelson J
    Biochemistry; 1993 Jul; 32(29):7435-44. PubMed ID: 8338841
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Distinctive acceptor-end structure and other determinants of Escherichia coli tRNAPro identity.
    McClain WH; Schneider J; Gabriel K
    Nucleic Acids Res; 1994 Feb; 22(3):522-9. PubMed ID: 8127693
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Amino acid-dependent transfer RNA affinity in a class I aminoacyl-tRNA synthetase.
    Uter NT; Gruic-Sovulj I; Perona JJ
    J Biol Chem; 2005 Jun; 280(25):23966-77. PubMed ID: 15845537
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A fluorescence spectroscopic study of substrate-induced conformational changes in glutaminyl-tRNA synthetase.
    Bhattacharyya T; Roy S
    Biochemistry; 1993 Sep; 32(36):9268-73. PubMed ID: 8369295
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Rational design of an evolutionary precursor of glutaminyl-tRNA synthetase.
    O'Donoghue P; Sheppard K; Nureki O; Söll D
    Proc Natl Acad Sci U S A; 2011 Dec; 108(51):20485-90. PubMed ID: 22158897
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Region of a conserved sequence motif in a class II tRNA synthetase needed for transfer of an activated amino acid to an RNA substrate.
    Shi JP; Musier-Forsyth K; Schimmel P
    Biochemistry; 1994 May; 33(17):5312-8. PubMed ID: 8172905
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Aminoacylation of RNA minihelices: implications for tRNA synthetase structural design and evolution.
    Buechter DD; Schimmel P
    Crit Rev Biochem Mol Biol; 1993; 28(4):309-22. PubMed ID: 7691478
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A chimaeric glutamyl:glutaminyl-tRNA synthetase: implications for evolution.
    Saha R; Dasgupta S; Basu G; Roy S
    Biochem J; 2009 Jan; 417(2):449-55. PubMed ID: 18817520
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Improved amber and opal suppressor tRNAs for incorporation of unnatural amino acids in vivo. Part 1: minimizing misacylation.
    Rodriguez EA; Lester HA; Dougherty DA
    RNA; 2007 Oct; 13(10):1703-14. PubMed ID: 17698638
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Base substitutions in the wobble position of the anticodon inhibit aminoacylation of E. coli tRNAfMet by E. coli Met-tRNA synthetase.
    Schulman LH; Pelka H; Susani M
    Nucleic Acids Res; 1983 Mar; 11(5):1439-55. PubMed ID: 6338482
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Structure networks of E. coli glutaminyl-tRNA synthetase: effects of ligand binding.
    Sathyapriya R; Vishveshwara S
    Proteins; 2007 Aug; 68(2):541-50. PubMed ID: 17444518
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The accuracy of aminoacylation--ensuring the fidelity of the genetic code.
    Söll D
    Experientia; 1990 Dec; 46(11-12):1089-96. PubMed ID: 2253707
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Long-range intramolecular signaling in a tRNA synthetase complex revealed by pre-steady-state kinetics.
    Uter NT; Perona JJ
    Proc Natl Acad Sci U S A; 2004 Oct; 101(40):14396-401. PubMed ID: 15452355
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Anticodon recognition in evolution: switching tRNA specificity of an aminoacyl-tRNA synthetase by site-directed peptide transplantation.
    Brevet A; Chen J; Commans S; Lazennec C; Blanquet S; Plateau P
    J Biol Chem; 2003 Aug; 278(33):30927-35. PubMed ID: 12766171
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The nondiscriminating aspartyl-tRNA synthetase from Helicobacter pylori: anticodon-binding domain mutations that impact tRNA specificity and heterologous toxicity.
    Chuawong P; Hendrickson TL
    Biochemistry; 2006 Jul; 45(26):8079-87. PubMed ID: 16800632
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Evolution of tRNA recognition systems and tRNA gene sequences.
    Saks ME; Sampson JR
    J Mol Evol; 1995 May; 40(5):509-18. PubMed ID: 7540216
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Synthetase recognition determinants of E. coli valine transfer RNA.
    Horowitz J; Chu WC; Derrick WB; Liu JC; Liu M; Yue D
    Biochemistry; 1999 Jun; 38(24):7737-46. PubMed ID: 10387013
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.