These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 7506440)

  • 1. Substrate uptake and utilization by the kidney of fed and starved rats in vivo.
    Elhamri M; Martin M; Ferrier B; Baverel G
    Ren Physiol Biochem; 1993; 16(6):311-24. PubMed ID: 7506440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in availability of glucogenic and ketogenic substrates and liver metabolism in fed or starved rats.
    Rémésy C; Demigné C
    Ann Nutr Metab; 1983; 27(1):57-70. PubMed ID: 6830143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The fuel of respiration of rat kidney cortex.
    Weidemann MJ; Krebs HA
    Biochem J; 1969 Apr; 112(2):149-66. PubMed ID: 5805283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The rate of cerebral utilization of glucose, ketone bodies, and oxygen: a comparative in vivo study of infant and adult rats.
    Dahlquist G; Persson B
    Pediatr Res; 1976 Nov; 10(11):910-7. PubMed ID: 980550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ketone-body utilization by adult and suckling rat brain in vivo.
    Hawkins RA; Williamson DH; Krebs HA
    Biochem J; 1971 Mar; 122(1):13-8. PubMed ID: 5124783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activities of enzymes of fat and ketone-body metabolism and effects of starvation on blood concentrations of glucose and fat fuels in teleost and elasmobranch fish.
    Zammit VA; Newsholme EA
    Biochem J; 1979 Nov; 184(2):313-22. PubMed ID: 534530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of glucose and ketone-body metabolism in brain of anaesthetized rats.
    Ruderman NB; Ross PS; Berger M; Goodman MN
    Biochem J; 1974 Jan; 138(1):1-10. PubMed ID: 4275704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in the concentrations of hepatic metabolites on administration of dihydroxyacetone or glycerol to starved rats and their relationship to the control of ketogenesis.
    Williamson DH; Veloso D; Ellington EV; Krebs HA
    Biochem J; 1969 Sep; 114(3):575-84. PubMed ID: 4309529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of hepatic fatty acid metabolism. The activities of mitochondrial and microsomal acyl-CoA:sn-glycerol 3-phosphate O-acyltransferase and the concentrations of malonyl-CoA, non-esterified and esterified carnitine, glycerol 3-phosphate, ketone bodies and long-chain acyl-CoA esters in livers of fed or starved pregnant, lactating and weaned rats.
    Zammit VA
    Biochem J; 1981 Jul; 198(1):75-83. PubMed ID: 7326003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cerebral utilization of glucose, ketone bodies and oxygen in starving infant rats and the effect of intrauterine growth retardation.
    Dahlquist G
    Acta Physiol Scand; 1976 Oct; 98(2):237-47. PubMed ID: 983734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glucose metabolism in perfused skeletal muscle. Effects of starvation, diabetes, fatty acids, acetoacetate, insulin and exercise on glucose uptake and disposition.
    Berger M; Hagg SA; Goodman MN; Ruderman NB
    Biochem J; 1976 Aug; 158(2):191-202. PubMed ID: 136249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Renal reabsorption and utilization of hydroxybutyrate and acetoacetate in starved rats.
    Barac-Nieto M
    Am J Physiol; 1986 Aug; 251(2 Pt 2):F257-65. PubMed ID: 3740272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Renal substrate utilization in normal and acidotic rats.
    Goldstein L
    Am J Physiol; 1987 Aug; 253(2 Pt 2):F351-7. PubMed ID: 3113269
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of starvation and refeeding on amino acid uptake by mammary gland of the lactating rat. Role of ketone bodies.
    Viña JR; Puertes IR; Montoro JB; Viña J
    Biochem J; 1983 Nov; 216(2):343-7. PubMed ID: 6661201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of succinate dimethyl ester on the metabolic and hormonal response to exercise in fed and starved rats.
    Ladriere L; Malaisse WJ
    Int J Mol Med; 2000 Jun; 5(6):643-9. PubMed ID: 10812016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Substrate utilization by rat stomach in vivo. Arteriovenous differences for glucose, lactate, ketone bodies, fatty acids and glycerol under control and acid-secreting conditions.
    Anderson NG; Hanson PJ
    Biochem J; 1983 Jun; 212(3):875-9. PubMed ID: 6882398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Induction processes in blood-brain transfer of ketone bodies during starvation.
    Gjedde A; Crone C
    Am J Physiol; 1975 Nov; 229(5):1165-9. PubMed ID: 1200135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rates of entry and oxidation of acetate, glucose, D(-)-beta-hydroxybutyrate, palmitate, oleate and stearate, and rates of production and oxidation of propionate and butyrate in fed and starved sheep.
    Annison EF; Brown RE; Leng RA; Lindsay DB; West CE
    Biochem J; 1967 Jul; 104(1):135-47. PubMed ID: 6035506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The control of fatty acid metabolism in liver cells from fed and starved sheep.
    Lomax MA; Donaldson IA; Pogson CI
    Biochem J; 1983 Aug; 214(2):553-60. PubMed ID: 6615480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolism of isolated kidney tubules. Interactions between lactate, glutamine and oleate metabolism.
    Guder WG; Wirthensohn G
    Eur J Biochem; 1979 Sep; 99(3):577-84. PubMed ID: 499217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.