These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 7506896)
1. Distribution of sulfate-reducing bacteria, O2, and H2S in photosynthetic biofilms determined by oligonucleotide probes and microelectrodes. Ramsing NB; Kühl M; Jørgensen BB Appl Environ Microbiol; 1993 Nov; 59(11):3840-9. PubMed ID: 7506896 [TBL] [Abstract][Full Text] [Related]
2. Successional development of sulfate-reducing bacterial populations and their activities in an activated sludge immobilized agar gel film. Okabe S; Santegoeds CM; Watanabe Y; de Beer D Biotechnol Bioeng; 2002 Apr; 78(2):119-30. PubMed ID: 11870602 [TBL] [Abstract][Full Text] [Related]
3. Analyses of spatial distributions of sulfate-reducing bacteria and their activity in aerobic wastewater biofilms. Okabe S; Itoh T; Satoh H; Watanabe Y Appl Environ Microbiol; 1999 Nov; 65(11):5107-16. PubMed ID: 10543829 [TBL] [Abstract][Full Text] [Related]
4. Distribution of bacterial populations in a stratified fjord (Mariager Fjord, Denmark) quantified by in situ hybridization and related to chemical gradients in the water column. Ramsing NB; Fossing H; Ferdelman TG; Andersen F; Thamdrup B Appl Environ Microbiol; 1996 Apr; 62(4):1391-404. PubMed ID: 8919801 [TBL] [Abstract][Full Text] [Related]
5. Microbial community structures and in situ sulfate-reducing and sulfur-oxidizing activities in biofilms developed on mortar specimens in a corroded sewer system. Satoh H; Odagiri M; Ito T; Okabe S Water Res; 2009 Oct; 43(18):4729-39. PubMed ID: 19709714 [TBL] [Abstract][Full Text] [Related]
6. Identity and abundance of active sulfate-reducing bacteria in deep tidal flat sediments determined by directed cultivation and CARD-FISH analysis. Gittel A; Mussmann M; Sass H; Cypionka H; Könneke M Environ Microbiol; 2008 Oct; 10(10):2645-58. PubMed ID: 18627412 [TBL] [Abstract][Full Text] [Related]
7. Phylogenetic identification and substrate uptake patterns of sulfate-reducing bacteria inhabiting an oxic-anoxic sewer biofilm determined by combining microautoradiography and fluorescent in situ hybridization. Ito T; Nielsen JL; Okabe S; Watanabe Y; Nielsen PH Appl Environ Microbiol; 2002 Jan; 68(1):356-64. PubMed ID: 11772645 [TBL] [Abstract][Full Text] [Related]
8. Development of oligonucleotide probes and PCR primers for detecting phylogenetic subgroups of sulfate-reducing bacteria. Daly K; Sharp RJ; McCarthy AJ Microbiology (Reading); 2000 Jul; 146 ( Pt 7)():1693-1705. PubMed ID: 10878133 [TBL] [Abstract][Full Text] [Related]
9. Successional development of sulfate-reducing bacterial populations and their activities in a wastewater biofilm growing under microaerophilic conditions. Ito T; Okabe S; Satoh H; Watanabe Y Appl Environ Microbiol; 2002 Mar; 68(3):1392-402. PubMed ID: 11872492 [TBL] [Abstract][Full Text] [Related]
10. Community structure, cellular rRNA content, and activity of sulfate-reducing bacteria in marine arctic sediments. Ravenschlag K; Sahm K; Knoblauch C; Jørgensen BB; Amann R Appl Environ Microbiol; 2000 Aug; 66(8):3592-602. PubMed ID: 10919825 [TBL] [Abstract][Full Text] [Related]
11. Bacterial community structure and activity of sulfate reducing bacteria in a membrane aerated biofilm analyzed by microsensor and molecular techniques. Liu H; Tan S; Sheng Z; Liu Y; Yu T Biotechnol Bioeng; 2014 Nov; 111(11):2155-62. PubMed ID: 24890472 [TBL] [Abstract][Full Text] [Related]
12. Sulfur-metabolizing bacterial populations in microbial mats of the Nakabusa hot spring, Japan. Kubo K; Knittel K; Amann R; Fukui M; Matsuura K Syst Appl Microbiol; 2011 Jun; 34(4):293-302. PubMed ID: 21353426 [TBL] [Abstract][Full Text] [Related]
13. Distribution of sulfate-reducing bacteria in a stratified fjord (Mariager Fjord, Denmark) as evaluated by most-probable-number counts and denaturing gradient gel electrophoresis of PCR-amplified ribosomal DNA fragments. Teske A; Wawer C; Muyzer G; Ramsing NB Appl Environ Microbiol; 1996 Apr; 62(4):1405-15. PubMed ID: 8919802 [TBL] [Abstract][Full Text] [Related]
14. A phylogenetic tree of 16S rRNA sequences from sulfate-reducing bacteria in a sandy marine sediment. Devereux R; Mundfrom GW Appl Environ Microbiol; 1994 Sep; 60(9):3437-9. PubMed ID: 7524446 [TBL] [Abstract][Full Text] [Related]
16. Identification of sulphate-reducing ectosymbiotic bacteria from anaerobic ciliates using 16S rRNA binding oligonucleotide probes. Fenchel T; Ramsing NB Arch Microbiol; 1992; 158(6):394-7. PubMed ID: 1482269 [TBL] [Abstract][Full Text] [Related]
17. Molecular analysis of the spatio-temporal distribution of sulfate-reducing bacteria (SRB) in Camargue (France) hypersaline microbial mat. Fourçans A; Ranchou-Peyruse A; Caumette P; Duran R Microb Ecol; 2008 Jul; 56(1):90-100. PubMed ID: 17952491 [TBL] [Abstract][Full Text] [Related]
18. Structure and function of a nitrifying biofilm as determined by in situ hybridization and the use of microelectrodes. Schramm A; Larsen LH; Revsbech NP; Ramsing NB; Amann R; Schleifer KH Appl Environ Microbiol; 1996 Dec; 62(12):4641-7. PubMed ID: 8953735 [TBL] [Abstract][Full Text] [Related]
19. Structure of microbial communities and hydrocarbon-dependent sulfate reduction in the anoxic layer of a polluted microbial mat. Abed RM; Musat N; Musat F; Mussmann M Mar Pollut Bull; 2011 Mar; 62(3):539-46. PubMed ID: 21194714 [TBL] [Abstract][Full Text] [Related]
20. Sulphate reduction and vertical distribution of sulphate-reducing bacteria quantified by rRNA slot-blot hybridization in a coastal marine sediment. Sahm K; MacGregor BJ; Jørgensen BB; Stahl DA Environ Microbiol; 1999 Feb; 1(1):65-74. PubMed ID: 11207719 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]