These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 7507446)

  • 1. Gamma-tubulin is asymmetrically distributed in the cortex of Xenopus oocytes.
    Gard DL
    Dev Biol; 1994 Jan; 161(1):131-40. PubMed ID: 7507446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The organization and animal-vegetal asymmetry of cytokeratin filaments in stage VI Xenopus oocytes is dependent upon F-actin and microtubules.
    Gard DL; Cha BJ; King E
    Dev Biol; 1997 Apr; 184(1):95-114. PubMed ID: 9142987
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microtubule organization, acetylation, and nucleation in Xenopus laevis oocytes: II. A developmental transition in microtubule organization during early diplotene.
    Gard DL; Affleck D; Error BM
    Dev Biol; 1995 Mar; 168(1):189-201. PubMed ID: 7883073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microtubules in Xenopus oocytes are oriented with their minus-ends towards the cortex.
    Pfeiffer DC; Gard DL
    Cell Motil Cytoskeleton; 1999; 44(1):34-43. PubMed ID: 10470017
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ectopic spindle assembly during maturation of Xenopus oocytes: evidence for functional polarization of the oocyte cortex.
    Gard DL
    Dev Biol; 1993 Sep; 159(1):298-310. PubMed ID: 8365568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Confocal microscopy and 3-D reconstruction of the cytoskeleton of Xenopus oocytes.
    Gard DL
    Microsc Res Tech; 1999 Mar; 44(6):388-414. PubMed ID: 10211674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Organization, nucleation, and acetylation of microtubules in Xenopus laevis oocytes: a study by confocal immunofluorescence microscopy.
    Gard DL
    Dev Biol; 1991 Feb; 143(2):346-62. PubMed ID: 1991557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cytokeratin intermediate filament organisation and dynamics in the vegetal cortex of living Xenopus laevis oocytes and eggs.
    Clarke EJ; Allan VJ
    Cell Motil Cytoskeleton; 2003 Sep; 56(1):13-26. PubMed ID: 12905528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A transient asymmetric distribution of XNOA 36 mRNA and the associated spectrin network bisects Xenopus laevis stage I oocytes along the future A/V axis.
    Vaccaro MC; Gigliotti S; Graziani F; Carotenuto R; De Angelis C; Tussellino M; Campanella C
    Eur J Cell Biol; 2010 Jul; 89(7):525-36. PubMed ID: 20226562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Establishment of animal-vegetal polarity during maturation in ascidian oocytes.
    Prodon F; Chenevert J; Sardet C
    Dev Biol; 2006 Feb; 290(2):297-311. PubMed ID: 16405883
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strongylocentrotus drobachiensis oocytes maintain a microtubule organizing center throughout oogenesis: implications for the establishment of egg polarity in sea urchins.
    EgaƱa AL; Boyle JA; Ernst SG
    Mol Reprod Dev; 2007 Jan; 74(1):76-87. PubMed ID: 16929525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RNA transport to the vegetal cortex of Xenopus oocytes.
    Zhou Y; King ML
    Dev Biol; 1996 Oct; 179(1):173-83. PubMed ID: 8873762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein 4.1 and its interaction with other cytoskeletal proteins in Xenopus laevis oogenesis.
    Carotenuto R; Petrucci TC; Correas I; Vaccaro MC; De Marco N; Dale B; Wilding M
    Eur J Cell Biol; 2009 Jun; 88(6):343-56. PubMed ID: 19304341
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in nuclear localization of An3, a RNA helicase, during oogenesis and embryogenesis in Xenopus laevis.
    Longo FJ; Mathews L; Gururajan R; Chen J; Weeks DL
    Mol Reprod Dev; 1996 Dec; 45(4):491-502. PubMed ID: 8956288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contractile proteins and nonerythroid spectrin in oogenesis of Xenopus laevis.
    Ryabova LV; Virtanen I; Wartiovaara J; Vassetzky SG
    Mol Reprod Dev; 1994 Jan; 37(1):99-109. PubMed ID: 8129937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Confocal microscopy of F-actin distribution in Xenopus oocytes.
    Roeder AD; Gard DL
    Zygote; 1994 May; 2(2):111-24. PubMed ID: 7874453
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distribution of gamma-tubulin differs in primary and secondary oocytes of Ephestia kuehniella (Pyralidae, Lepidoptera).
    Wolf KW; Joshi HC
    Mol Reprod Dev; 1996 Oct; 45(2):225-30. PubMed ID: 8914081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oogenesis: chromatin and microtubule dynamics during meiotic prophase.
    Mattson BA; Albertini DF
    Mol Reprod Dev; 1990 Apr; 25(4):374-83. PubMed ID: 1691651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in microtubule structures during the first cell cycle of physiologically polyspermic newt eggs.
    Iwao Y; Yasumitsu K; Narihira M; Jiang J; Nagahama Y
    Mol Reprod Dev; 1997 Jun; 47(2):210-21. PubMed ID: 9136124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Soluble tubulin complexes, gamma-tubulin, and their changing distribution in the zebrafish (Danio rerio) ovary, oocyte and embryo.
    Liu J; Lessman CA
    Comp Biochem Physiol B Biochem Mol Biol; 2007 May; 147(1):56-73. PubMed ID: 17293149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.