These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 7507522)

  • 1. Anisotropic and heterogeneous diffusion in the turtle cerebellum: implications for volume transmission.
    Rice ME; Okada YC; Nicholson C
    J Neurophysiol; 1993 Nov; 70(5):2035-44. PubMed ID: 7507522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution of anisotropic diffusion in the developing rat corpus callosum.
    Vorísek I; Syková E
    J Neurophysiol; 1997 Aug; 78(2):912-9. PubMed ID: 9307124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glutamate- and aspartate-induced extracellular potassium and calcium shifts and their relation to those of kainate, quisqualate and N-methyl-D-aspartate in the isolated turtle cerebellum.
    Rice ME; Nicholson C
    Neuroscience; 1990; 38(2):295-310. PubMed ID: 1979851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ischemia-induced changes in the extracellular space diffusion parameters, K+, and pH in the developing rat cortex and corpus callosum.
    Vorísek I; Syková E
    J Cereb Blood Flow Metab; 1997 Feb; 17(2):191-203. PubMed ID: 9040499
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extracellular alkaline-acid pH shifts evoked by iontophoresis of glutamate and aspartate in turtle cerebellum.
    Chesler M; Rice ME
    Neuroscience; 1991; 41(1):257-67. PubMed ID: 1711651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Origin of the apparent tissue conductivity in the molecular and granular layers of the in vitro turtle cerebellum and the interpretation of current source-density analysis.
    Okada YC; Huang JC; Rice ME; Tranchina D; Nicholson C
    J Neurophysiol; 1994 Aug; 72(2):742-53. PubMed ID: 7983532
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water compartmentalization and extracellular tortuosity after osmotic changes in cerebellum of Trachemys scripta.
    Krizaj D; Rice ME; Wardle RA; Nicholson C
    J Physiol; 1996 May; 492 ( Pt 3)(Pt 3):887-96. PubMed ID: 8734998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extracellular diffusion is fast and isotropic in the stratum radiatum of hippocampal CA1 region in rat brain slices.
    Hrabetová S
    Hippocampus; 2005; 15(4):441-50. PubMed ID: 15719413
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ion diffusion modified by tortuosity and volume fraction in the extracellular microenvironment of the rat cerebellum.
    Nicholson C; Phillips JM
    J Physiol; 1981 Dec; 321():225-57. PubMed ID: 7338810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time-resolved quantification of the dynamic extracellular space in the brain during short-lived event: methodology and simulations.
    Chen KC; Zhou Y; Zhao HH
    J Neurophysiol; 2019 May; 121(5):1718-1734. PubMed ID: 30786219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extracellular volume fraction and diffusion characteristics during progressive ischemia and terminal anoxia in the spinal cord of the rat.
    Syková E; Svoboda J; Polák J; Chvátal A
    J Cereb Blood Flow Metab; 1994 Mar; 14(2):301-11. PubMed ID: 8113325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extracellular alkalinization evoked by GABA and its relationship to activity-dependent pH shifts in turtle cerebellum.
    Chen JC; Chesler M
    J Physiol; 1991 Oct; 442():431-46. PubMed ID: 1798035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. X-irradiation-induced changes in the diffusion parameters of the developing rat brain.
    Syková E; Svoboda J; Simonová Z; Lehmenkühler A; Lassmann H
    Neuroscience; 1996 Jan; 70(2):597-612. PubMed ID: 8848163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extracellular space parameters in the rat neocortex and subcortical white matter during postnatal development determined by diffusion analysis.
    Lehmenkühler A; Syková E; Svoboda J; Zilles K; Nicholson C
    Neuroscience; 1993 Jul; 55(2):339-51. PubMed ID: 8377929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Issues involved in the transmission of chemical signals through the brain extracellular space.
    Nicholson C
    Acta Morphol Neerl Scand; 1988-1989; 26(2-3):69-80. PubMed ID: 2908164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synaptic integration in a model of cerebellar granule cells.
    Gabbiani F; Midtgaard J; Knöpfel T
    J Neurophysiol; 1994 Aug; 72(2):999-1009. PubMed ID: 7527078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diffusion heterogeneity and anisotropy in rat hippocampus.
    Mazel T; Simonová Z; Syková E
    Neuroreport; 1998 May; 9(7):1299-304. PubMed ID: 9631417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Astrocytes, oligodendroglia, extracellular space volume and geometry in rat fetal brain grafts.
    Syková E; Roitbak T; Mazel T; Simonová Z; Harvey AR
    Neuroscience; 1999; 91(2):783-98. PubMed ID: 10366034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterogeneous and anisotropic diffusion in the developing rat spinal cord.
    Prokopová S; Vargová L; Syková E
    Neuroreport; 1997 Nov; 8(16):3527-32. PubMed ID: 9427320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes of extracellular space volume and tortuosity in the spinal cord of Lewis rats with experimental autoimmune encephalomyelitis.
    Simonová Z; Svoboda J; Orkand P; Bernard CC; Lassmann H; Syková E
    Physiol Res; 1996; 45(1):11-22. PubMed ID: 8884919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.