These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 7507620)

  • 21. Ca(2+)-dependent and -independent processes in transmitter release from the motor nerve terminals of frog.
    Maeno T
    Jpn J Physiol; 1993; 43 Suppl 1():S119-24. PubMed ID: 7903713
    [No Abstract]   [Full Text] [Related]  

  • 22. Modulation of transmitter release by calcium ions and nerve impulses.
    Rahamimoff R; Erulkar SD; Alnaes E; Meiri H; Rotshenker S; Rahamimoff H
    Cold Spring Harb Symp Quant Biol; 1976; 40():107-16. PubMed ID: 59656
    [No Abstract]   [Full Text] [Related]  

  • 23. [Molecular mechanism of exocytosis in neural and immune system].
    Hirashima N
    Yakugaku Zasshi; 2000 Dec; 120(12):1419-27. PubMed ID: 11193390
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A bioenergetic approach to the nerve terminal.
    Nicholls D
    Biochim Biophys Acta; 1992 Jul; 1101(2):264-5. PubMed ID: 1352992
    [No Abstract]   [Full Text] [Related]  

  • 25. Drugs affecting the central nervous system: effects of pemoline and tricyclic antidepressants on nerve terminal adenosine triphosphatase activities and neurotransmitter release.
    Gilbert JC; Allen JM; Townsend BG; Wyllie MG
    Neuropharmacology; 1978 Jun; 17(6):419-21. PubMed ID: 27733
    [No Abstract]   [Full Text] [Related]  

  • 26. A theoretical study of calcium entry in nerve terminals, with application to neurotransmitter release.
    Parnas H; Segel LA
    J Theor Biol; 1981 Jul; 91(1):125-69. PubMed ID: 6117676
    [No Abstract]   [Full Text] [Related]  

  • 27. Intracellular calcium and vasopressin release of rat isolated neurohypophysial nerve endings.
    Stuenkel EL; Nordmann JJ
    J Physiol; 1993 Aug; 468():335-55. PubMed ID: 8254513
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phenytoin: calcium- and calmodulin-dependent protein phosphorylation and neurotransmitter release.
    DeLorenzo RJ
    Adv Neurol; 1980; 27():399-414. PubMed ID: 6103658
    [No Abstract]   [Full Text] [Related]  

  • 29. Release of substance P from isolated nerve endings.
    Schenker C; Mroz EA; Leeman SE
    Nature; 1976 Dec 23-30; 264(5588):790-2. PubMed ID: 13307
    [No Abstract]   [Full Text] [Related]  

  • 30. Activity-dependent modulation of nerve terminal excitation in a mammalian peptidergic system.
    Bourque CW
    Trends Neurosci; 1991 Jan; 14(1):28-30. PubMed ID: 1709529
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of the actin cytoskeleton on epithelial Na+ channel regulation.
    Cantiello HF
    Kidney Int; 1995 Oct; 48(4):970-84. PubMed ID: 8569107
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regulation of serotonin storage and release.
    Sanders-Bush E
    Adv Biochem Psychopharmacol; 1982; 34():17-34. PubMed ID: 6127916
    [No Abstract]   [Full Text] [Related]  

  • 33. Inositol trisphosphate and cyclic adenosine diphosphate-ribose increase quantal transmitter release at frog motor nerve terminals: possible involvement of smooth endoplasmic reticulum.
    Brailoiu E; Miyamoto MD
    Neuroscience; 2000; 95(4):927-31. PubMed ID: 10682700
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Coexistence of peptides and classical neurotransmitters].
    Pelletier G
    Ann Endocrinol (Paris); 1984; 45(3):173-4. PubMed ID: 6084453
    [No Abstract]   [Full Text] [Related]  

  • 35. Neurotransmitter release from tottering mice nerve terminals with reduced expression of mutated P- and Q-type Ca2+-channels.
    Leenders AG; van den Maagdenberg AM; Lopes da Silva FH; Sheng ZH; Molenaar PC; Ghijsen WE
    Eur J Neurosci; 2002 Jan; 15(1):13-8. PubMed ID: 11860502
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Proteins regulating neurotransmitter release of synaptic vesicles at nerve terminals].
    Cai Q; Lu PH; Sheng ZH
    Sheng Li Ke Xue Jin Zhan; 2003 Jan; 34(1):6-10. PubMed ID: 12778801
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rho GTPases: molecular switches that control the organization and dynamics of the actin cytoskeleton.
    Hall A; Nobes CD
    Philos Trans R Soc Lond B Biol Sci; 2000 Jul; 355(1399):965-70. PubMed ID: 11128990
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cytoskeleton-dependent endomembrane organization in plant cells: an emerging role for microtubules.
    Brandizzi F; Wasteneys GO
    Plant J; 2013 Jul; 75(2):339-49. PubMed ID: 23647215
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Modulatory effects of various factors of muscular origin on the function of the motor nerve endings].
    Drabkina TM; Matiushkin DP; Romanovskiĭ DIu
    Ross Fiziol Zh Im I M Sechenova; 1999 Jan; 85(1):149-58. PubMed ID: 10389172
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cytoskeletal control of vesicle transport and exocytosis in chromaffin cells.
    Trifaró JM; Gasman S; Gutiérrez LM
    Acta Physiol (Oxf); 2008 Feb; 192(2):165-72. PubMed ID: 18021329
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.