BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

416 related articles for article (PubMed ID: 7507714)

  • 1. Formamidinium-induced dimer stabilization and flicker block behavior in homo- and heterodimer channels formed by gramicidin A and N-acetyl gramicidin A.
    Seoh SA; Busath DD
    Biophys J; 1993 Nov; 65(5):1817-27. PubMed ID: 7507714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The permeation properties of small organic cations in gramicidin A channels.
    Seoh SA; Busath D
    Biophys J; 1993 Apr; 64(4):1017-28. PubMed ID: 7684267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proton conduction in gramicidin A and in its dioxolane-linked dimer in different lipid bilayers.
    Cukierman S; Quigley EP; Crumrine DS
    Biophys J; 1997 Nov; 73(5):2489-502. PubMed ID: 9370442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gramicidin tryptophans mediate formamidinium-induced channel stabilization.
    Seoh SA; Busath D
    Biophys J; 1995 Jun; 68(6):2271-9. PubMed ID: 7544164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular dynamics study of free energy profiles for organic cations in gramicidin A channels.
    Hao Y; Pear MR; Busath DD
    Biophys J; 1997 Oct; 73(4):1699-716. PubMed ID: 9336167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Attenuation of proton currents by methanol in a dioxolane-linked gramicidin A channel in different lipid bilayers.
    Quigley EP; Emerick AJ; Crumrine DS; Cukierman S
    Biophys J; 1998 Dec; 75(6):2811-20. PubMed ID: 9826603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Noncontact dipole effects on channel permeation. I. Experiments with (5F-indole)Trp13 gramicidin A channels.
    Busath DD; Thulin CD; Hendershot RW; Phillips LR; Maughan P; Cole CD; Bingham NC; Morrison S; Baird LC; Hendershot RJ; Cotten M; Cross TA
    Biophys J; 1998 Dec; 75(6):2830-44. PubMed ID: 9826605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of gramicidin channel structure and function by the aliphatic "spacer" residues 10, 12, and 14 between the tryptophans.
    Jude AR; Greathouse DV; Koeppe RE; Providence LL; Andersen OS
    Biochemistry; 1999 Jan; 38(3):1030-9. PubMed ID: 9893999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lorentzian noise in single gramicidin A channel formamidinium currents.
    Fairbanks TG; Andrus CL; Busath DD
    Novartis Found Symp; 1999; 225():74-87; discussion 87-92. PubMed ID: 10472049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics of gramicidin channel formation in lipid bilayers: transmembrane monomer association.
    O'Connell AM; Koeppe RE; Andersen OS
    Science; 1990 Nov; 250(4985):1256-9. PubMed ID: 1700867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Peptide backbone chemistry and membrane channel function: effects of a single amide-to-ester replacement on gramicidin channel structure and function.
    Jude AR; Providence LL; Schmutzer SE; Shobana S; Greathouse DV; Andersen OS; Koeppe R
    Biochemistry; 2001 Feb; 40(5):1460-72. PubMed ID: 11170474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the origin of closing flickers in gramicidin channels: a new hypothesis.
    Armstrong KM; Cukierman S
    Biophys J; 2002 Mar; 82(3):1329-37. PubMed ID: 11867449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of gramicidin A and gramicidin M channel conductance dispersities.
    Markham JC; Gowen JA; Cross TA; Busath DD
    Biochim Biophys Acta; 2001 Aug; 1513(2):185-92. PubMed ID: 11470090
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane dipole potential modulates proton conductance through gramicidin channel: movement of negative ionic defects inside the channel.
    Rokitskaya TI; Kotova EA; Antonenko YN
    Biophys J; 2002 Feb; 82(2):865-73. PubMed ID: 11806928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gramicidin channels that have no tryptophan residues.
    Fonseca V; Daumas P; Ranjalahy-Rasoloarijao L; Heitz F; Lazaro R; Trudelle Y; Andersen OS
    Biochemistry; 1992 Jun; 31(23):5340-50. PubMed ID: 1376621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proton transfer in gramicidin channels is modulated by the thickness of monoglyceride bilayers.
    Chernyshev A; Armstrong KM; Cukierman S
    Biophys J; 2003 Jan; 84(1):238-50. PubMed ID: 12524278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. pH-Dependent properties of ion channels formed by N-terminally glutamate substituted gramicidin A in planar lipid bilayers.
    Chistyulin DK; Rokitskaya TI; Kovalchuk SI; Sorochkina AI; Firsov AM; Kotova EA; Antonenko YN
    Biochim Biophys Acta Biomembr; 2017 May; 1859(5):896-902. PubMed ID: 28188740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noncontact dipole effects on channel permeation. VI. 5F- and 6F-Trp gramicidin channel currents.
    Cole CD; Frost AS; Thompson N; Cotten M; Cross TA; Busath DD
    Biophys J; 2002 Oct; 83(4):1974-86. PubMed ID: 12324416
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrophobic coupling of lipid bilayer energetics to channel function.
    Goforth RL; Chi AK; Greathouse DV; Providence LL; Koeppe RE; Andersen OS
    J Gen Physiol; 2003 May; 121(5):477-93. PubMed ID: 12719487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of surface tension and ion occupancy effects on gramicidin A channel lifetime.
    Ring A; Sandblom J
    Biophys J; 1988 Apr; 53(4):541-8. PubMed ID: 2454676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.