These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 7508280)

  • 1. Neonatal red blood cell lysis induced by hypertonic low ionic strength media.
    Corchs JL; Corchs MJ; Serrani RE
    Arch Int Physiol Biochim Biophys; 1993; 101(5):249-52. PubMed ID: 7508280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of morphological response of red cells in a sucrose solution.
    Rudenko SV
    Blood Cells Mol Dis; 2009; 42(3):252-61. PubMed ID: 19249232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of hemolysis of human erythrocytes exposed to monosodium urate monohydrate crystals. Preliminary characterization of membrane pores.
    Jackson JK; Winternitz CI; Burt HM
    Biochim Biophys Acta; 1996 May; 1281(1):45-52. PubMed ID: 8652603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of low electrolyte media on salt loss and hemolysis of mammalian red blood cells.
    Zeidler RB; Kim HD
    J Cell Physiol; 1979 Sep; 100(3):551-61. PubMed ID: 39943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hypertonic cryohemolysis of pathologic red blood cells.
    Streichman S; Kahana E; Tatarsky I
    Am J Hematol; 1985 Dec; 20(4):373-81. PubMed ID: 4073012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cation-sensitive pore formation in rehydrated erythrocytes.
    Rudenko SV; Patelaros SV
    Biochim Biophys Acta; 1995 Apr; 1235(1):1-9. PubMed ID: 7718596
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Mechanical lysis of human erythrocytes. Membrane stabilization by plasma proteins].
    Zavodnik YB; Piletskaia TP; Stepuro II
    Ukr Biokhim Zh (1978); 1991; 63(6):72-8. PubMed ID: 1816688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anomalous permeability and stability characteristics of erythrocytes in non-electrolyte media.
    Sambasivarao D; Rao NM; Sitaramam V
    Biochim Biophys Acta; 1986 May; 857(1):48-60. PubMed ID: 2421776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Some combined effects of hypertonic solutions and changes in temperature on posthypertonic hemolysis of human red blood cells.
    Woolgar AE; Morris GJ
    Cryobiology; 1973 Apr; 10(1):82-6. PubMed ID: 4707243
    [No Abstract]   [Full Text] [Related]  

  • 10. The salting-in hypothesis of post-hypertonic lysis.
    Muldrew K
    Cryobiology; 2008 Dec; 57(3):251-6. PubMed ID: 18845134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cold-induced hemolysis in a hypertonic milieu.
    Green FA; Jung CY
    J Membr Biol; 1977 May; 33(3-4):249-62. PubMed ID: 864690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cord blood red cell osmotic fragility: a comparison between preterm and full-term newborn infants.
    Bautista ML; Altaf W; Lall R; Wapnir RA
    Early Hum Dev; 2003 May; 72(1):37-46. PubMed ID: 12706310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrical hemolysis of human and bovine red blood cells.
    Zimmermann U; Pilwat G; Holzapfel C; Rosenheck K
    J Membr Biol; 1976 Dec; 30(2):135-52. PubMed ID: 13222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human erythrocyte membrane bound enzyme acetylcholinesterase.
    Heller M; Hanahan DJ
    Biochim Biophys Acta; 1972 Jan; 255(1):251-72. PubMed ID: 4622094
    [No Abstract]   [Full Text] [Related]  

  • 15. Role of membrane thermotropic properties on hypotonic hemolysis and hypertonic cryohemolysis of human red blood cells.
    Minetti M; Ceccarini M; Di Stasi AM
    J Cell Biochem; 1984; 25(2):61-72. PubMed ID: 6090481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ca2+-activated K+ efflux limits complement-mediated lysis of human erythrocytes.
    Halperin JA; Brugnara C; Nicholson-Weller A
    J Clin Invest; 1989 May; 83(5):1466-71. PubMed ID: 2708520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Posthypertonic hemolysis in a sucrose system.
    Zade-Oppen AM
    Experientia; 1970 Oct; 26(10):1087-8. PubMed ID: 5488758
    [No Abstract]   [Full Text] [Related]  

  • 18. Human neonatal red cells. Regulatory volume response under anisotonic conditions.
    Serrani RE; Gioia IA; Corchs JL
    Arch Int Physiol Biochim Biophys; 1991 Dec; 99(6):473-7. PubMed ID: 1725753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of choline phospholipids in hypertonic cryohemolysis.
    Green LA; Hui HL; Green FA; Jung CY; Pudlak WS
    Cryobiology; 1983 Feb; 20(1):25-9. PubMed ID: 6831908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The effect of hypertonic solutions on the red blood cells. --I. Comparison of the effect of various hypertonic solutions on the red blood cells].
    Kaya H; Ihara N; Suzuki K; Kohama A
    Masui; 1982 May; 31(5):464-8. PubMed ID: 6813529
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.