BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 7508440)

  • 1. Mapping the membrane topology of the closed state of the colicin E1 channel.
    Palmer LR; Merrill AR
    J Biol Chem; 1994 Feb; 269(6):4187-93. PubMed ID: 7508440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acrylamide quenching of the intrinsic fluorescence of tryptophan residues genetically engineered into the soluble colicin E1 channel peptide. Structural characterization of the insertion-competent state.
    Merrill AR; Palmer LR; Szabo AG
    Biochemistry; 1993 Jul; 32(27):6974-81. PubMed ID: 7687465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of a chameleon-like pH-sensitive segment within the colicin E1 channel domain that may serve as the pH-activated trigger for membrane bilayer association.
    Merrill AR; Steer BA; Prentice GA; Weller MJ; Szabo AG
    Biochemistry; 1997 Jun; 36(23):6874-84. PubMed ID: 9188682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of membrane protein topology by red-edge excitation shift analysis: application to the membrane-bound colicin E1 channel peptide.
    Tory MC; Merrill AR
    Biochim Biophys Acta; 2002 Aug; 1564(2):435-48. PubMed ID: 12175927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane-inserted colicin E1 channel domain: a topological survey by fluorescence quenching suggests that model membrane thickness affects membrane penetration.
    Malenbaum SE; Merrill AR; London E
    J Nat Toxins; 1998 Oct; 7(3):269-90. PubMed ID: 9783264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adventures in membrane protein topology. A study of the membrane-bound state of colicin E1.
    Tory MC; Merrill AR
    J Biol Chem; 1999 Aug; 274(35):24539-49. PubMed ID: 10455117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of lipid composition on the topography of membrane-associated hydrophobic helices: stabilization of transmembrane topography by anionic lipids.
    Shahidullah K; London E
    J Mol Biol; 2008 Jun; 379(4):704-18. PubMed ID: 18479706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A mechanism for toxin insertion into membranes is suggested by the crystal structure of the channel-forming domain of colicin E1.
    Elkins P; Bunker A; Cramer WA; Stauffacher CV
    Structure; 1997 Mar; 5(3):443-58. PubMed ID: 9083117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Constraints imposed by protease accessibility on the trans-membrane and surface topography of the colicin E1 ion channel.
    Zhang YL; Cramer WA
    Protein Sci; 1992 Dec; 1(12):1666-76. PubMed ID: 1284805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for the amphipathic nature and tilted topology of helices 4 and 5 in the closed state of the colicin E1 channel.
    Ho D; Merrill AR
    Biochemistry; 2009 Feb; 48(6):1369-80. PubMed ID: 19159330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solid-state NMR studies of the membrane-bound closed state of the colicin E1 channel domain in lipid bilayers.
    Kim Y; Valentine K; Opella SJ; Schendel SL; Cramer WA
    Protein Sci; 1998 Feb; 7(2):342-8. PubMed ID: 9521110
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Binding of the antimicrobial peptide temporin L to liposomes assessed by Trp fluorescence.
    Zhao H; Kinnunen PK
    J Biol Chem; 2002 Jul; 277(28):25170-7. PubMed ID: 11991956
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Orientational distribution of alpha-helices in the colicin B and E1 channel domains: a one and two dimensional 15N solid-state NMR investigation in uniaxially aligned phospholipid bilayers.
    Lambotte S; Jasperse P; Bechinger B
    Biochemistry; 1998 Jan; 37(1):16-22. PubMed ID: 9453746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural analyses of a channel-forming fragment of colicin E1 incorporated into lipid vesicles. Fourier-transform infrared and tryptophan fluorescence studies.
    Suga H; Shirabe K; Yamamoto T; Tasumi M; Umeda M; Nishimura C; Nakazawa A; Nakanishi M; Arata Y
    J Biol Chem; 1991 Jul; 266(21):13537-43. PubMed ID: 1713207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward elucidating the membrane topology of helix two of the colicin E1 channel domain.
    White D; Musse AA; Wang J; London E; Merrill AR
    J Biol Chem; 2006 Oct; 281(43):32375-84. PubMed ID: 16854987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A very short peptide makes a voltage-dependent ion channel: the critical length of the channel domain of colicin E1.
    Liu QR; Crozel V; Levinthal F; Slatin S; Finkelstein A; Levinthal C
    Proteins; 1986 Nov; 1(3):218-29. PubMed ID: 2453053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The colicin E1 insertion-competent state: detection of structural changes using fluorescence resonance energy transfer.
    Steer BA; Merrill AR
    Biochemistry; 1994 Feb; 33(5):1108-15. PubMed ID: 8110742
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tilted, extended, and lying in wait: the membrane-bound topology of residues Lys-381-Ser-405 of the colicin E1 channel domain.
    Wei Z; White D; Wang J; Musse AA; Merrill AR
    Biochemistry; 2007 May; 46(20):6074-85. PubMed ID: 17455912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic properties of membrane proteins: reversible insertion into membrane vesicles of a colicin E1 channel-forming peptide.
    Xu S; Cramer WA; Peterson AA; Hermodson M; Montecucco C
    Proc Natl Acad Sci U S A; 1988 Oct; 85(20):7531-5. PubMed ID: 2459708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic description of structural changes linked to membrane import of the colicin E1 channel protein.
    Zakharov SD; Lindeberg M; Cramer WA
    Biochemistry; 1999 Aug; 38(35):11325-32. PubMed ID: 10471282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.