These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 7508440)
1. Mapping the membrane topology of the closed state of the colicin E1 channel. Palmer LR; Merrill AR J Biol Chem; 1994 Feb; 269(6):4187-93. PubMed ID: 7508440 [TBL] [Abstract][Full Text] [Related]
2. Acrylamide quenching of the intrinsic fluorescence of tryptophan residues genetically engineered into the soluble colicin E1 channel peptide. Structural characterization of the insertion-competent state. Merrill AR; Palmer LR; Szabo AG Biochemistry; 1993 Jul; 32(27):6974-81. PubMed ID: 7687465 [TBL] [Abstract][Full Text] [Related]
3. Identification of a chameleon-like pH-sensitive segment within the colicin E1 channel domain that may serve as the pH-activated trigger for membrane bilayer association. Merrill AR; Steer BA; Prentice GA; Weller MJ; Szabo AG Biochemistry; 1997 Jun; 36(23):6874-84. PubMed ID: 9188682 [TBL] [Abstract][Full Text] [Related]
4. Determination of membrane protein topology by red-edge excitation shift analysis: application to the membrane-bound colicin E1 channel peptide. Tory MC; Merrill AR Biochim Biophys Acta; 2002 Aug; 1564(2):435-48. PubMed ID: 12175927 [TBL] [Abstract][Full Text] [Related]
5. Membrane-inserted colicin E1 channel domain: a topological survey by fluorescence quenching suggests that model membrane thickness affects membrane penetration. Malenbaum SE; Merrill AR; London E J Nat Toxins; 1998 Oct; 7(3):269-90. PubMed ID: 9783264 [TBL] [Abstract][Full Text] [Related]
6. Adventures in membrane protein topology. A study of the membrane-bound state of colicin E1. Tory MC; Merrill AR J Biol Chem; 1999 Aug; 274(35):24539-49. PubMed ID: 10455117 [TBL] [Abstract][Full Text] [Related]
7. Effect of lipid composition on the topography of membrane-associated hydrophobic helices: stabilization of transmembrane topography by anionic lipids. Shahidullah K; London E J Mol Biol; 2008 Jun; 379(4):704-18. PubMed ID: 18479706 [TBL] [Abstract][Full Text] [Related]
8. A mechanism for toxin insertion into membranes is suggested by the crystal structure of the channel-forming domain of colicin E1. Elkins P; Bunker A; Cramer WA; Stauffacher CV Structure; 1997 Mar; 5(3):443-58. PubMed ID: 9083117 [TBL] [Abstract][Full Text] [Related]
9. Constraints imposed by protease accessibility on the trans-membrane and surface topography of the colicin E1 ion channel. Zhang YL; Cramer WA Protein Sci; 1992 Dec; 1(12):1666-76. PubMed ID: 1284805 [TBL] [Abstract][Full Text] [Related]
10. Evidence for the amphipathic nature and tilted topology of helices 4 and 5 in the closed state of the colicin E1 channel. Ho D; Merrill AR Biochemistry; 2009 Feb; 48(6):1369-80. PubMed ID: 19159330 [TBL] [Abstract][Full Text] [Related]
11. Solid-state NMR studies of the membrane-bound closed state of the colicin E1 channel domain in lipid bilayers. Kim Y; Valentine K; Opella SJ; Schendel SL; Cramer WA Protein Sci; 1998 Feb; 7(2):342-8. PubMed ID: 9521110 [TBL] [Abstract][Full Text] [Related]
12. Binding of the antimicrobial peptide temporin L to liposomes assessed by Trp fluorescence. Zhao H; Kinnunen PK J Biol Chem; 2002 Jul; 277(28):25170-7. PubMed ID: 11991956 [TBL] [Abstract][Full Text] [Related]
13. Orientational distribution of alpha-helices in the colicin B and E1 channel domains: a one and two dimensional 15N solid-state NMR investigation in uniaxially aligned phospholipid bilayers. Lambotte S; Jasperse P; Bechinger B Biochemistry; 1998 Jan; 37(1):16-22. PubMed ID: 9453746 [TBL] [Abstract][Full Text] [Related]
14. Structural analyses of a channel-forming fragment of colicin E1 incorporated into lipid vesicles. Fourier-transform infrared and tryptophan fluorescence studies. Suga H; Shirabe K; Yamamoto T; Tasumi M; Umeda M; Nishimura C; Nakazawa A; Nakanishi M; Arata Y J Biol Chem; 1991 Jul; 266(21):13537-43. PubMed ID: 1713207 [TBL] [Abstract][Full Text] [Related]
15. Toward elucidating the membrane topology of helix two of the colicin E1 channel domain. White D; Musse AA; Wang J; London E; Merrill AR J Biol Chem; 2006 Oct; 281(43):32375-84. PubMed ID: 16854987 [TBL] [Abstract][Full Text] [Related]
16. A very short peptide makes a voltage-dependent ion channel: the critical length of the channel domain of colicin E1. Liu QR; Crozel V; Levinthal F; Slatin S; Finkelstein A; Levinthal C Proteins; 1986 Nov; 1(3):218-29. PubMed ID: 2453053 [TBL] [Abstract][Full Text] [Related]
17. The colicin E1 insertion-competent state: detection of structural changes using fluorescence resonance energy transfer. Steer BA; Merrill AR Biochemistry; 1994 Feb; 33(5):1108-15. PubMed ID: 8110742 [TBL] [Abstract][Full Text] [Related]
18. Tilted, extended, and lying in wait: the membrane-bound topology of residues Lys-381-Ser-405 of the colicin E1 channel domain. Wei Z; White D; Wang J; Musse AA; Merrill AR Biochemistry; 2007 May; 46(20):6074-85. PubMed ID: 17455912 [TBL] [Abstract][Full Text] [Related]
19. Dynamic properties of membrane proteins: reversible insertion into membrane vesicles of a colicin E1 channel-forming peptide. Xu S; Cramer WA; Peterson AA; Hermodson M; Montecucco C Proc Natl Acad Sci U S A; 1988 Oct; 85(20):7531-5. PubMed ID: 2459708 [TBL] [Abstract][Full Text] [Related]
20. Kinetic description of structural changes linked to membrane import of the colicin E1 channel protein. Zakharov SD; Lindeberg M; Cramer WA Biochemistry; 1999 Aug; 38(35):11325-32. PubMed ID: 10471282 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]