These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 750848)

  • 1. Effects on traction of outsole composition and hardnesses of basketball shoes and three types of playing surfaces.
    Rheinstein DJ; Morehouse CA; Niebel BW
    Med Sci Sports; 1978; 10(4):282-8. PubMed ID: 750848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Torques developed by different types of shoes on various playing surfaces.
    Bonstingl RW; Morehouse CA; Niebel BW
    Med Sci Sports; 1975; 7(2):127-31. PubMed ID: 807786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Torsional injuries of the lower limb: an analysis of the frictional torque between different types of football turf and the shoe outsole.
    Smeets K; Jacobs P; Hertogs R; Luyckx JP; Innocenti B; Corten K; Ekstrand J; Bellemans J
    Br J Sports Med; 2012 Dec; 46(15):1078-83. PubMed ID: 22842236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Football playing surface and shoe design affect rotational traction.
    Villwock MR; Meyer EG; Powell JW; Fouty AJ; Haut RC
    Am J Sports Med; 2009 Mar; 37(3):518-25. PubMed ID: 19168808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peak torque and rotational stiffness developed at the shoe-surface interface: the effect of shoe type and playing surface.
    Livesay GA; Reda DR; Nauman EA
    Am J Sports Med; 2006 Mar; 34(3):415-22. PubMed ID: 16399930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of floor conditions upon frictional characteristics of squash court shoes.
    Chapman AE; Leyland AJ; Ross SM; Ryall M
    J Sports Sci; 1991; 9(1):33-41. PubMed ID: 1856911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Six different football shoes, one playing surface and the weather; Assessing variation in shoe-surface traction over one season of elite football.
    Thomson A; Whiteley R; Wilson M; Bleakley C
    PLoS One; 2019; 14(4):e0216364. PubMed ID: 31039209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of basketball shoe mass, outsole traction, and forefoot bending stiffness on three athletic movements.
    Worobets J; Wannop JW
    Sports Biomech; 2015 Sep; 14(3):351-60. PubMed ID: 26517604
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Footwear practices and operating room contamination.
    Copp G; Slezak L; Dudley N; Mailhot CB
    Nurs Res; 1987; 36(6):366-9. PubMed ID: 3671124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomechanical modeling of footwear-fluid-floor interaction during slips.
    Gupta S; Chanda A
    J Biomech; 2023 Jul; 156():111690. PubMed ID: 37356270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of coefficient of friction based on footwear outsole features.
    Iraqi A; Vidic NS; Redfern MS; Beschorner KE
    Appl Ergon; 2020 Jan; 82():102963. PubMed ID: 31580996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance testing of work shoes labeled as slip resistant.
    Jones T; Iraqi A; Beschorner K
    Appl Ergon; 2018 Apr; 68():304-312. PubMed ID: 29409649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of friction in the measurement of slipperiness, Part 1: friction mechanisms and definition of test conditions.
    Chang WR; Grönqvist R; Leclercq S; Myung R; Makkonen L; Strandberg L; Brungraber RJ; Mattke U; Thorpe SC
    Ergonomics; 2001 Oct; 44(13):1217-32. PubMed ID: 11794765
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of footwear outsole material on slip resistance on dry and contaminated surfaces with geometrically controlled outsoles.
    Jakobsen L; Lysdal FG; Bagehorn T; Kersting UG; Sivebaek IM
    Ergonomics; 2023 Mar; 66(3):322-329. PubMed ID: 35603991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic performance assessment of selected sport shoes on impact forces.
    Dufek JS; Bates BT; Davis HP; Malone LA
    Med Sci Sports Exerc; 1991 Sep; 23(9):1062-7. PubMed ID: 1943627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A review of synthetic playing surfaces, the shoe-surface interface, and lower extremity injuries in athletes.
    Taylor SA; Fabricant PD; Khair MM; Haleem AM; Drakos MC
    Phys Sportsmed; 2012 Nov; 40(4):66-72. PubMed ID: 23306416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Floor/shoe slip resistance measurement.
    Chaffin DB; Woldstad JC; Trujillo A
    Am Ind Hyg Assoc J; 1992 May; 53(5):283-9. PubMed ID: 1609738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of surface roughness in the measurement of slipperiness.
    Chang WR; Kim IJ; Manning DP; Bunterngchit Y
    Ergonomics; 2001 Oct; 44(13):1200-16. PubMed ID: 11794764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficacy of footwear disinfection and shoe cover use in an animal research facility.
    Allen KP; Csida T; Leming J; Murray K; Thulin J
    Lab Anim (NY); 2010 Apr; 39(4):107-11. PubMed ID: 20305633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finite element analysis of a model of a therapeutic shoe: effect of material selection for the outsole.
    Lewis G
    Biomed Mater Eng; 2003; 13(1):75-81. PubMed ID: 12652024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.