These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 7509434)

  • 21. Polychlorinated biphenyls PCB 153 and PCB 126 impair the glutamate-nitric oxide-cGMP pathway in cerebellar neurons in culture by different mechanisms.
    Llansola M; Piedrafita B; Rodrigo R; Montoliu C; Felipo V
    Neurotox Res; 2009 Aug; 16(2):97-105. PubMed ID: 19526286
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cellular origins of cyclic GMP responses to excitatory amino acid receptor agonists in rat cerebellum in vitro.
    Garthwaite J; Garthwaite G
    J Neurochem; 1987 Jan; 48(1):29-39. PubMed ID: 2878975
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cerebellar Golgi, Purkinje, and basket cells have reduced gamma-aminobutyric acid immunoreactivity in stargazer mutant mice.
    Richardson CA; Leitch B
    J Comp Neurol; 2002 Nov; 453(1):85-99. PubMed ID: 12357434
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Intercellular action of nitric oxide increases cGMP in cerebellar Purkinje cells.
    Hartell NA; Furuya S; Jacoby S; Okada D
    Neuroreport; 2001 Jan; 12(1):25-8. PubMed ID: 11201085
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nitric oxide synthase expression reveals compartments of cerebellar granule cells and suggests a role for mossy fibers in their development.
    Schilling K; Schmidt HH; Baader SL
    Neuroscience; 1994 Apr; 59(4):893-903. PubMed ID: 7520135
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Excitatory amino acid signal transduction in the hippocampus: role of noradrenergic afferents and nitric oxide in cGMP increases in vivo.
    Wood PL; Ryan R; Li M
    Life Sci; 1992; 51(8):601-6. PubMed ID: 1322483
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Neuronal and inducible nitric oxide synthase expression and protein nitration in rat cerebellum after oxygen and glucose deprivation.
    Rodrigo J; Alonso D; Fernández AP; Serrano J; Richart A; López JC; Santacana M; Martínez-Murillo R; Bentura ML; Ghiglione M; Uttenthal LO
    Brain Res; 2001 Aug; 909(1-2):20-45. PubMed ID: 11478918
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nitric oxide does not mediate the neurotrophic effects of excitatory amino acids in cultured cerebellar granule neurons.
    Boje KM; Skolnick P
    Eur J Pharmacol; 1992 Mar; 212(2-3):151-8. PubMed ID: 1318207
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The NO-cGMP-PKG pathway plays an essential role in the acquisition of ethanol resistance by cerebellar granule neurons.
    Bonthius DJ; Karacay B; Dai D; Hutton A; Pantazis NJ
    Neurotoxicol Teratol; 2004; 26(1):47-57. PubMed ID: 15001213
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cerebellar benzodiazepine receptors: cellular localization and consequences of neurological mutations in mice.
    Rotter A; Frostholm A
    Brain Res; 1988 Mar; 444(1):133-46. PubMed ID: 2834020
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Displaced granule cells in the molecular layer of the cerebellar cortex in mice treated with methylazoxymethanol.
    Yamanaka H; Obata K
    Neurosci Lett; 2004 Mar; 358(2):132-6. PubMed ID: 15026166
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Climbing fiver activation and 3', 5'-cyclic guanosine monophosphate (cGMP) content in cortex and deep nuclei of cerebellum.
    Biggio G; Guidotti A
    Brain Res; 1976 May; 107(2):365-73. PubMed ID: 178409
    [TBL] [Abstract][Full Text] [Related]  

  • 33. NMDA-, but not kainate- or quisqualate-dependent increases in cerebellar cGMP are dependent upon monoaminergic innervation.
    Wood PL; Ryan R; Li M
    Life Sci; 1992; 51(26):PL267-70. PubMed ID: 1361956
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Polychlorinated biphenyls PCB 52, PCB 180, and PCB 138 impair the glutamate-nitric oxide-cGMP pathway in cerebellar neurons in culture by different mechanisms.
    Llansola M; Montoliu C; Boix J; Felipo V
    Chem Res Toxicol; 2010 Apr; 23(4):813-20. PubMed ID: 20297801
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Parallin, a cerebellar granule cell protein the expression of which is developmentally regulated by Purkinje cells: evidence from mutant mice.
    Smith AM; Mullen RJ
    Brain Res Dev Brain Res; 1997 Dec; 104(1-2):79-89. PubMed ID: 9466710
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Immunohistochemistry of GluR1 subunits of AMPA receptors of rat cerebellar nerve cells.
    Castejón OJ; Dailey ME
    Biocell; 2009 Aug; 33(2):71-80. PubMed ID: 19886034
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nitric oxide-independent down-regulation of soluble guanylyl cyclase by bacterial endotoxin in astroglial cells.
    Baltrons MA; García A
    J Neurochem; 1999 Nov; 73(5):2149-57. PubMed ID: 10537075
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metabotropic glutamate receptor 5, but not 1, modulates NMDA receptor-mediated activation of neuronal nitric oxide synthase.
    Llansola M; Felipo V
    Neurochem Int; 2010 Mar; 56(4):535-45. PubMed ID: 20043967
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cellular localization of corticotropin releasing factor receptors in the adult mouse cerebellum.
    Bishop GA; Seelandt CM; King JS
    Neuroscience; 2000; 101(4):1083-92. PubMed ID: 11113357
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Akt pathway mediates a cGMP-dependent survival role of nitric oxide in cerebellar granule neurones.
    Ciani E; Virgili M; Contestabile A
    J Neurochem; 2002 Apr; 81(2):218-28. PubMed ID: 12064469
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.