These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

597 related articles for article (PubMed ID: 7509443)

  • 41. Agonist-induced closure of constitutively open gamma-aminobutyric acid channels with mutated M2 domains.
    Pan ZH; Zhang D; Zhang X; Lipton SA
    Proc Natl Acad Sci U S A; 1997 Jun; 94(12):6490-5. PubMed ID: 9177245
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Agonist-driven conformational changes in the inner beta-sheet of alpha7 nicotinic receptors.
    McLaughlin JT; Fu J; Rosenberg RL
    Mol Pharmacol; 2007 May; 71(5):1312-8. PubMed ID: 17325129
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Substitutions of amino acids in the pore domain of homomeric α7 nicotinic receptors for analogous residues present in heteromeric receptors modify gating, rectification and binding properties.
    Criado M; Svobodová L; Mulet J; Sala F; Sala S
    J Neurochem; 2011 Oct; 119(1):40-9. PubMed ID: 21790604
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Assembly of nicotinic and other Cys-loop receptors.
    Tsetlin V; Kuzmin D; Kasheverov I
    J Neurochem; 2011 Mar; 116(5):734-41. PubMed ID: 21214570
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Modeling of agonist binding to the ligand-gated ion channel superfamily of receptors.
    Cockcroft VB; Osguthorpe DJ; Barnard EA; Lunt GG
    Proteins; 1990; 8(4):386-97. PubMed ID: 1965333
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Modular design of Cys-loop ligand-gated ion channels: functional 5-HT3 and GABA rho1 receptors lacking the large cytoplasmic M3M4 loop.
    Jansen M; Bali M; Akabas MH
    J Gen Physiol; 2008 Feb; 131(2):137-46. PubMed ID: 18227272
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Amino acids lining the channel of the gamma-aminobutyric acid type A receptor identified by cysteine substitution.
    Xu M; Akabas MH
    J Biol Chem; 1993 Oct; 268(29):21505-8. PubMed ID: 7691812
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Assembly of mutant subunits of the nicotinic acetylcholine receptor lacking the conserved disulfide loop structure.
    Sumikawa K; Gehle VM
    J Biol Chem; 1992 Mar; 267(9):6286-90. PubMed ID: 1556136
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Identification of amino acid residues contributing to the pore of a P2X receptor.
    Rassendren F; Buell G; Newbolt A; North RA; Surprenant A
    EMBO J; 1997 Jun; 16(12):3446-54. PubMed ID: 9218787
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mapping the rho1 GABA(C) receptor agonist binding pocket. Constructing a complete model.
    Sedelnikova A; Smith CD; Zakharkin SO; Davis D; Weiss DS; Chang Y
    J Biol Chem; 2005 Jan; 280(2):1535-42. PubMed ID: 15548535
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Blue native PAGE as a useful method for the analysis of the assembly of distinct combinations of nicotinic acetylcholine receptor subunits.
    Nicke A; Rettinger J; Mutschler E; Schmalzing G
    J Recept Signal Transduct Res; 1999; 19(1-4):493-507. PubMed ID: 10071780
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Importance of a novel GABAA receptor subunit for benzodiazepine pharmacology.
    Pritchett DB; Sontheimer H; Shivers BD; Ymer S; Kettenmann H; Schofield PR; Seeburg PH
    Nature; 1989 Apr; 338(6216):582-5. PubMed ID: 2538761
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Differential protein mobility of the gamma-aminobutyric acid, type A, receptor alpha and beta subunit channel-lining segments.
    Horenstein J; Riegelhaupt P; Akabas MH
    J Biol Chem; 2005 Jan; 280(2):1573-81. PubMed ID: 15522864
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Structure and dynamics of the GABA binding pocket: A narrowing cleft that constricts during activation.
    Wagner DA; Czajkowski C
    J Neurosci; 2001 Jan; 21(1):67-74. PubMed ID: 11150321
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Assembly, trafficking and function of α1β2γ2 GABAA receptors are regulated by N-terminal regions, in a subunit-specific manner.
    Wong LW; Tae HS; Cromer BA
    J Neurochem; 2015 Sep; 134(5):819-32. PubMed ID: 26016529
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Evidence for coassembly of mutant GABAC rho1 with GABAA gamma2S, glycine alpha1 and glycine alpha2 receptor subunits in vitro.
    Pan ZH; Zhang D; Zhang X; Lipton SA
    Eur J Neurosci; 2000 Sep; 12(9):3137-45. PubMed ID: 10998097
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Separate domains for desensitization of GABA rho 1 and beta 2 subunits expressed in Xenopus oocytes.
    Lu L; Huang Y
    J Membr Biol; 1998 Jul; 164(2):115-24. PubMed ID: 9662556
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Redox modulation of homomeric rho1 GABA receptors.
    Calero CI; Calvo DJ
    J Neurochem; 2008 Jun; 105(6):2367-74. PubMed ID: 18315569
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mutagenesis of the GABA rho 1 receptor alters agonist affinity and channel gating.
    Kusama T; Wang JB; Spivak CE; Uhl GR
    Neuroreport; 1994 Jun; 5(10):1209-12. PubMed ID: 7919166
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Replacement of histidine in position 105 in the α₅ subunit by cysteine stimulates zolpidem sensitivity of α₅β₂γ₂ GABA(A) receptors.
    Baur R; Sigel E
    J Neurochem; 2007 Dec; 103(6):2556-64. PubMed ID: 17953656
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 30.