These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 7509707)

  • 1. Activation of alpha-adrenoceptors indirectly facilitates sodium pumping in frog motoneurons.
    Shope SB; Hackman JC; Holohean AM; Davidoff RA
    Brain Res; 1993 Dec; 630(1-2):207-13. PubMed ID: 7509707
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epinephrine and norepinephrine modulate neuronal responses to excitatory amino acids and agonists in frog spinal cord.
    Wohlberg CJ; Hackman JC; Davidoff RA
    Synapse; 1987; 1(2):202-7. PubMed ID: 2905530
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synaptic excitation of alpha-motoneurons by dorsal root afferents in the neonatal rat spinal cord.
    Pinco M; Lev-Tov A
    J Neurophysiol; 1993 Jul; 70(1):406-17. PubMed ID: 8103090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stimulation of noradrenaline release in human cerebral cortex mediated by N-methyl-D-aspartate (NMDA) and non-NMDA receptors.
    Fink K; Schultheiss R; Göthert M
    Br J Pharmacol; 1992 May; 106(1):67-72. PubMed ID: 1380384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activation of 5-HT1C/2 receptors depresses polysynaptic reflexes and excitatory amino acid-induced motoneuron responses in frog spinal cord.
    Holohean AM; Hackman JC; Shope SB; Davidoff RA
    Brain Res; 1992 May; 579(1):8-16. PubMed ID: 1320445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Serotonin1A facilitation of frog motoneuron responses to afferent stimuli and to N-methyl-D-aspartate.
    Holohean AM; Hackman JC; Shope SB; Davidoff RA
    Neuroscience; 1992; 48(2):469-77. PubMed ID: 1351269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NMDA antagonists and potentiation of NMDA-induced motoneuron depolarizations in the isolated frog spinal cord.
    Zhang DX; Hackman JC; Davidoff RA
    Brain Res; 1989 Jul; 493(1):129-35. PubMed ID: 2570616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Primary afferents evoke excitatory amino acid receptor-mediated EPSPs that are modulated by presynaptic GABAB receptors in lamprey.
    Christenson J; Grillner S
    J Neurophysiol; 1991 Dec; 66(6):2141-9. PubMed ID: 1687474
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of frog spinal cord interneuronal activity by activation of 5-HT3 receptors.
    Holohean AM; Hackman JC; Davidoff RA
    Brain Res; 1995 Dec; 704(2):184-90. PubMed ID: 8788913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epinephrine- and norepinephrine-evoked potential changes of frog primary afferent terminals: pharmacological characterization of alpha and beta components.
    Wohlberg CJ; Hackman JC; Ryan GP; Davidoff RA
    Brain Res; 1985 Feb; 327(1-2):289-301. PubMed ID: 2859079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms involved in the metabotropic glutamate receptor-enhancement of NMDA-mediated motoneurone responses in frog spinal cord.
    Holohean AM; Hackman JC; Davidoff RA
    Br J Pharmacol; 1999 Jan; 126(1):333-41. PubMed ID: 10051153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intrinsic NMDA-induced oscillations in motoneurons of an adult vertebrate spinal cord are masked by inhibition.
    Rioult-Pedotti MS
    J Neurophysiol; 1997 Feb; 77(2):717-30. PubMed ID: 9065844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activation of kappa-opioid receptors depresses electrically evoked excitatory postsynaptic potentials on 5-HT-sensitive neurones in the rat dorsal raphé nucleus in vitro.
    Pinnock RD
    Brain Res; 1992 Jun; 583(1-2):237-46. PubMed ID: 1354563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution of Ca(2+)-permeable AMPA/KA receptors to glutamate-induced Ca(2+) rise in embryonic lumbar motoneurons in situ.
    Metzger F; Kulik A; Sendtner M; Ballanyi K
    J Neurophysiol; 2000 Jan; 83(1):50-9. PubMed ID: 10634852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Participation of excitatory amino acid receptors in the slow excitatory synaptic transmission in rat spinal dorsal horn.
    Gerber G; Cerne R; Randić M
    Brain Res; 1991 Oct; 561(2):236-51. PubMed ID: 1686986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 6-Cyano-7-nitroquinoxaline-2,3-dione as an excitatory amino acid antagonist in area CA1 of rat hippocampus.
    Blake JF; Yates RG; Brown MW; Collingridge GL
    Br J Pharmacol; 1989 May; 97(1):71-6. PubMed ID: 2566354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of glutamatergic synaptic input to spinal lamina II(o) neurons by presynaptic alpha(2)-adrenergic receptors.
    Pan YZ; Li DP; Pan HL
    J Neurophysiol; 2002 Apr; 87(4):1938-47. PubMed ID: 11929913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NMDA-induced burst discharge in guinea pig trigeminal motoneurons in vitro.
    Kim YI; Chandler SH
    J Neurophysiol; 1995 Jul; 74(1):334-46. PubMed ID: 7472335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. After-hyperpolarizations produced in frog motoneurons by excitatory amino acid analogues.
    Hackman JC; Holohean AM; Wohlberg CJ; Davidoff RA
    Brain Res; 1987 Mar; 407(1):94-101. PubMed ID: 3034375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of excitatory amino acids in mediating burst discharge of red nucleus neurons in the in vitro turtle brain stem-cerebellum.
    Keifer J; Houk JC
    J Neurophysiol; 1991 Mar; 65(3):454-67. PubMed ID: 1675669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.