These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 7509745)
61. Comparison of the sequence specificity of bleomycin cleavage in two slightly different DNA sequences. Murray V; Martin RF Nucleic Acids Res; 1985 Mar; 13(5):1467-81. PubMed ID: 2582361 [TBL] [Abstract][Full Text] [Related]
62. Sequence-specific double-strand cleavage of DNA by Fe-bleomycin. 2. Mechanism and dynamics. Absalon MJ; Wu W; Kozarich JW; Stubbe J Biochemistry; 1995 Feb; 34(6):2076-86. PubMed ID: 7531499 [TBL] [Abstract][Full Text] [Related]
63. DNA-sequence binding preference of the GC-selective ligand mithramycin. Deoxyribonuclease-I/deoxyribonuclease-II and hydroxy-radical footprinting at CCCG, CCGC, CGGC, GCCC and GGGG flanked by (AT)n and An.Tn. Carpenter ML; Marks JN; Fox KR Eur J Biochem; 1993 Aug; 215(3):561-6. PubMed ID: 8394809 [TBL] [Abstract][Full Text] [Related]
64. Sequence-dependent reactivity of linear DNA to chemical cleavage by Cu(II):thiol combinations including cysteine or glutathione. John DC; Douglas KT Biochem J; 1993 Jan; 289 ( Pt 2)(Pt 2):463-8. PubMed ID: 8380996 [TBL] [Abstract][Full Text] [Related]
65. Effective DNA cleavage by bleomycin-vanadium(IV) complex plus hydrogen peroxide. Kuwahara J; Suzuki T; Sugiura Y Biochem Biophys Res Commun; 1985 Jun; 129(2):368-74. PubMed ID: 2409964 [TBL] [Abstract][Full Text] [Related]
66. The strong binding of luzopeptin to DNA. Fox KR; Woolley C Biochem Pharmacol; 1990 Mar; 39(5):941-8. PubMed ID: 2310419 [TBL] [Abstract][Full Text] [Related]
67. Design, synthesis and sequence selective DNA cleavage of functional models of bleomycin--II. 1,2-trans-disubstituted cyclopropane units as novel linkers. Huang L; Quada JC; Lown JW Bioorg Med Chem; 1995 Jun; 3(6):647-57. PubMed ID: 7582943 [TBL] [Abstract][Full Text] [Related]
68. Characterization of bleomycin cleavage sites in strongly bound hairpin DNAs. Giroux RA; Hecht SM J Am Chem Soc; 2010 Dec; 132(47):16987-96. PubMed ID: 21047076 [TBL] [Abstract][Full Text] [Related]
69. Sequence-specific double-strand cleavage of DNA by Fe-bleomycin. 1. The detection of sequence-specific double-strand breaks using hairpin oligonucleotides. Absalon MJ; Kozarich JW; Stubbe J Biochemistry; 1995 Feb; 34(6):2065-75. PubMed ID: 7531498 [TBL] [Abstract][Full Text] [Related]
70. Solution structure of Co(III)-bleomycin-OOH bound to a phosphoglycolate lesion containing oligonucleotide: implications for bleomycin-induced double-strand DNA cleavage. Hoehn ST; Junker HD; Bunt RC; Turner CJ; Stubbe J Biochemistry; 2001 May; 40(20):5894-905. PubMed ID: 11352724 [TBL] [Abstract][Full Text] [Related]
71. Accurate and rapid modeling of iron-bleomycin-induced DNA damage using tethered duplex oligonucleotides and electrospray ionization ion trap mass spectrometric analysis. Harsch A; Marzilli LA; Bunt RC; Stubbe J; Vouros P Nucleic Acids Res; 2000 May; 28(9):1978-85. PubMed ID: 10756200 [TBL] [Abstract][Full Text] [Related]
72. Site-specific cleavage of RNA and DNA by complementary DNA--bleomycin A5 conjugates. Vorobjev PE; Smith JB; Pyshnaya IA; Levina AS; Zarytova VF; Wickstrom E Bioconjug Chem; 2003; 14(6):1307-13. PubMed ID: 14624648 [TBL] [Abstract][Full Text] [Related]
73. Influence of chromatin structure on bleomycin-DNA interactions at base pair resolution in the human beta-globin gene cluster. Cairns MJ; Murray V Biochemistry; 1996 Jul; 35(26):8753-60. PubMed ID: 8679639 [TBL] [Abstract][Full Text] [Related]
74. Novel DNA photocleaving agents with high DNA sequence specificity related to the antibiotic bleomycin A2. Kuroda R; Satoh H; Shinomiya M; Watanabe T; Otsuka M Nucleic Acids Res; 1995 May; 23(9):1524-30. PubMed ID: 7540288 [TBL] [Abstract][Full Text] [Related]
75. Action of bleomycin on structural mimics of intermediates in DNA double-strand cleavage. Charles K; Povirk LF Chem Res Toxicol; 1998 Dec; 11(12):1580-5. PubMed ID: 9860504 [TBL] [Abstract][Full Text] [Related]
76. Spontaneous cleavage of bleomycin-induced abasic sites in chromatin and their mutagenicity in mammalian shuttle vectors. Bennett RA; Swerdlow PS; Povirk LF Biochemistry; 1993 Mar; 32(12):3188-95. PubMed ID: 7681328 [TBL] [Abstract][Full Text] [Related]
77. Fluorescent intercalator displacement analyses of DNA binding by the peptide-derived natural products netropsin, actinomycin, and bleomycin. Lewis MA; Long EC Bioorg Med Chem; 2006 May; 14(10):3481-90. PubMed ID: 16439138 [TBL] [Abstract][Full Text] [Related]
78. Structural characterization of intrinsically curved AT-rich DNA sequences. Carrera P; AzorÃn F Nucleic Acids Res; 1994 Sep; 22(18):3671-80. PubMed ID: 7937076 [TBL] [Abstract][Full Text] [Related]
79. Site specificity of bleomycin cleavage in purified and intracellular simian virus 40 DNA. Grimwade JE; Cason EB; Beerman TA Nucleic Acids Res; 1987 Aug; 15(16):6315-29. PubMed ID: 2442726 [TBL] [Abstract][Full Text] [Related]
80. EPR spectroscopic investigation of the lability of oxygen in activated bleomycin: implications for the mechanism of bleomycin-mediated DNA degradation. Sam JW; Peisach J Biochemistry; 1993 Feb; 32(6):1488-91. PubMed ID: 7679285 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]