These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 7509859)

  • 21. On the relationship between the number of negative slope regions in the voltage-current curve of the Hodgkin-Huxley model and its parameter values.
    Bedrov YA; Akoev GN; Dick OE
    Biol Cybern; 1995 Jul; 73(2):149-54. PubMed ID: 7545012
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modeling neural mechanisms for genesis of respiratory rhythm and pattern. I. Models of respiratory neurons.
    Rybak IA; Paton JF; Schwaber JS
    J Neurophysiol; 1997 Apr; 77(4):1994-2006. PubMed ID: 9114250
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Postnatal maturation of rat hypothalamoneurohypophysial neurons: evidence for a developmental decrease in calcium entry during action potentials.
    Widmer H; Amerdeil H; Fontanaud P; Desarménien MG
    J Neurophysiol; 1997 Jan; 77(1):260-71. PubMed ID: 9120568
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Exploring parameter space in detailed single neuron models: simulations of the mitral and granule cells of the olfactory bulb.
    Bhalla US; Bower JM
    J Neurophysiol; 1993 Jun; 69(6):1948-65. PubMed ID: 7688798
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Computational modeling of neuronal dynamics for systems analysis: application to neurons of the cardiorespiratory NTS in the rat.
    Schwaber JS; Graves EB; Paton JF
    Brain Res; 1993 Feb; 604(1-2):126-41. PubMed ID: 8457841
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Predicting spike times of a detailed conductance-based neuron model driven by stochastic spike arrival.
    Jolivet R; Gerstner W
    J Physiol Paris; 2004; 98(4-6):442-51. PubMed ID: 16274972
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stochastic resonance in a Hodgkin-Huxley neuron in the absence of external noise.
    Chik DT; Wang Y; Wang ZD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Aug; 64(2 Pt 1):021913. PubMed ID: 11497626
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Space-Clamped Hodgkin-Huxley System with Random Synaptic Input: Inhibition of Spiking by Weak Noise and Analysis with Moment Equations.
    Tuckwell HC; Ditlevsen S
    Neural Comput; 2016 Oct; 28(10):2129-61. PubMed ID: 27557099
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hopf bifurcations in multiple-parameter space of the Hodgkin-Huxley equations I. Global organization of bistable periodic solutions.
    Fukai H; Doi S; Nomura T; Sato S
    Biol Cybern; 2000 Mar; 82(3):215-22. PubMed ID: 10664108
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ionic basis for endogenous rhythmic patterns induced by activation of N-methyl-D-aspartate receptors in neurons of the rat nucleus tractus solitarii.
    Tell F; Jean A
    J Neurophysiol; 1993 Dec; 70(6):2379-90. PubMed ID: 7509858
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ionic mechanisms underlying synchronized oscillations and propagating waves in a model of ferret thalamic slices.
    Destexhe A; Bal T; McCormick DA; Sejnowski TJ
    J Neurophysiol; 1996 Sep; 76(3):2049-70. PubMed ID: 8890314
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Channel-based Langevin approach for the stochastic Hodgkin-Huxley neuron.
    Huang Y; Rüdiger S; Shuai J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012716. PubMed ID: 23410368
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ionic currents in giant motor axons of the jellyfish, Aglantha digitale.
    Meech RW; Mackie GO
    J Neurophysiol; 1993 Mar; 69(3):884-93. PubMed ID: 7681867
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A variable-threshold motoneuron model that incorporates time- and voltage-dependent potassium and calcium conductances.
    Powers RK
    J Neurophysiol; 1993 Jul; 70(1):246-62. PubMed ID: 8395578
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A re-examination of the possibility of controlling the firing rate gain of neurons by balancing excitatory and inhibitory conductances.
    Capaday C
    Exp Brain Res; 2002 Mar; 143(1):67-77. PubMed ID: 11907692
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Compartmental models of type A and type B guinea pig medial vestibular neurons.
    Quadroni R; Knöpfel T
    J Neurophysiol; 1994 Oct; 72(4):1911-24. PubMed ID: 7529823
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Computation of spiking activity for a stochastic spatial neuron model: effects of spatial distribution of input on bimodality and CV of the ISI distribution.
    Tuckwell HC
    Math Biosci; 2007 Jun; 207(2):246-60. PubMed ID: 17337282
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Low-voltage-activated calcium channels in the lamprey locomotor network: simulation and experiment.
    Tegnér J; Hellgren-Kotaleski J; Lansner A; Grillner S
    J Neurophysiol; 1997 Apr; 77(4):1795-812. PubMed ID: 9114237
    [TBL] [Abstract][Full Text] [Related]  

  • 39. What is the most realistic single-compartment model of spike initiation?
    Brette R
    PLoS Comput Biol; 2015 Apr; 11(4):e1004114. PubMed ID: 25856629
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spike trains in a stochastic Hodgkin-Huxley system.
    Henry C T
    Biosystems; 2005 Apr; 80(1):25-36. PubMed ID: 15740832
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.