These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 7510224)

  • 41. Smooth muscle cells in coronary atherosclerotic plaques: phenotypic variation and clinical consequences.
    van der Wal AC
    Eur J Clin Invest; 2001 Nov; 31(11):923-5. PubMed ID: 11737232
    [No Abstract]   [Full Text] [Related]  

  • 42. [Absence of endothelium-dependent relaxation of isolated segments of the human coronary artery in coronary arteriosclerosis].
    Vedernikov IuP
    Kardiologiia; 1987 Jul; 27(7):103-5. PubMed ID: 3656906
    [No Abstract]   [Full Text] [Related]  

  • 43. Predicting the likelihood of postangioplastic restenosis: a proliferating challenge for nuclear medicine.
    Narula J; Strauss HW
    J Nucl Med; 2000 Sep; 41(9):1541-4. PubMed ID: 10994736
    [No Abstract]   [Full Text] [Related]  

  • 44. Infiltrates of activated mast cells at the site of coronary atheromatous erosion or rupture in myocardial infarction.
    Kovanen PT; Kaartinen M; Paavonen T
    Circulation; 1995 Sep; 92(5):1084-8. PubMed ID: 7648650
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Transcription factor SOX18 is expressed in human coronary atherosclerotic lesions and regulates DNA synthesis and vascular cell growth.
    García-Ramírez M; Martínez-González J; Juan-Babot JO; Rodríguez C; Badimon L
    Arterioscler Thromb Vasc Biol; 2005 Nov; 25(11):2398-403. PubMed ID: 16179596
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Human coronary transplantation-associated arteriosclerosis. Evidence for a chronic immune reaction to activated graft endothelial cells.
    Salomon RN; Hughes CC; Schoen FJ; Payne DD; Pober JS; Libby P
    Am J Pathol; 1991 Apr; 138(4):791-8. PubMed ID: 2012171
    [TBL] [Abstract][Full Text] [Related]  

  • 47. IAGS proceedings. The biology of plaque and patient vulnerability. Panel discussion.
    Lerman A; Vogel J; Fischell T; Leimgruber P; Firth B
    J Invasive Cardiol; 2005 Apr; 17(4):239-42. PubMed ID: 15875354
    [No Abstract]   [Full Text] [Related]  

  • 48. Cytokine-mediated fibronectin production and transendothelial migration of lymphocytes in the mechanism of cardiac allograft vascular disease: efficacy of novel therapeutic approaches.
    Rabinovitch M; Molossi S; Clausell N
    J Heart Lung Transplant; 1995; 14(6 Pt 2):S116-23. PubMed ID: 8719473
    [No Abstract]   [Full Text] [Related]  

  • 49. Impaired coronary vasomotion after coronary intervention with drug-eluting stents.
    Ishihara M
    Circ J; 2010 Nov; 74(11):2293-4. PubMed ID: 20962425
    [No Abstract]   [Full Text] [Related]  

  • 50. Morphological analysis of atherosclerotic plaque retrieved by coronary atherectomy.
    Depré C; Ribichini F; Wijns W
    Semin Interv Cardiol; 2000 Dec; 5(4):175-84. PubMed ID: 11244514
    [TBL] [Abstract][Full Text] [Related]  

  • 51. In vitro evaluation of vascular endothelial and smooth muscle cell survival and apoptosis in response to hypothermia and freezing.
    Tatsutani KN; Joye JD; Virmani R; Taylor MJ
    Cryo Letters; 2005; 26(1):55-64. PubMed ID: 15772713
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Composition of atherosclerotic plaques in the four major epicardial coronary arteries in patients greater than or equal to 90 years of age.
    Gertz SD; Malekzadeh S; Dollar AL; Kragel AH; Roberts WC
    Am J Cardiol; 1991 Jun; 67(15):1228-33. PubMed ID: 2035446
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Atherosclerosis and plaque rupture: an update.
    Afzal MN; Saeed SA; Shah BH
    J Pak Med Assoc; 1999 Feb; 49(2):37-43. PubMed ID: 10513436
    [No Abstract]   [Full Text] [Related]  

  • 54. Clinical-pathological correlations of coronary disease progression and regression.
    Fuster V; Badimon JJ; Badimon L
    Circulation; 1992 Dec; 86(6 Suppl):III1-11. PubMed ID: 1424042
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Intimal neovascularization in human coronary atherosclerosis: its origin and pathophysiological significance.
    Kumamoto M; Nakashima Y; Sueishi K
    Hum Pathol; 1995 Apr; 26(4):450-6. PubMed ID: 7535741
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Effect of dihematoporphyrin derivatives on cultivated human smooth muscle cells from normal and atherosclerotic vascular segments-- Overview of results and implications for photodynamic therapy].
    Dartsch PC; Betz E; Ischinger T
    Z Kardiol; 1991 Jan; 80(1):6-14. PubMed ID: 1827935
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Coronary vascular remodeling in association with endothelial dysfunction.
    Lerman A; Cannan CR; Higano SH; Nishimura RA; Holmes DR
    Am J Cardiol; 1998 May; 81(9):1105-9. PubMed ID: 9605050
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Axitinib attenuates intraplaque angiogenesis, haemorrhages and plaque destabilization in mice.
    Van der Veken B; De Meyer GRY; Martinet W
    Vascul Pharmacol; 2018 Jan; 100():34-40. PubMed ID: 29079346
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Structural and Functional Coronary Artery Abnormalities in Patients With Vasospastic Angina Pectoris.
    Ong P; Aziz A; Hansen HS; Prescott E; Athanasiadis A; Sechtem U
    Circ J; 2015; 79(7):1431-8. PubMed ID: 26084380
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Variable expression of the estrogen receptor in normal and atherosclerotic coronary arteries of premenopausal women.
    Losordo DW; Kearney M; Kim EA; Jekanowski J; Isner JM
    Circulation; 1994 Apr; 89(4):1501-10. PubMed ID: 8149515
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.