BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 7510226)

  • 1. Transcription by T7 RNA polymerase of DNA containing abasic sites.
    Sanchez G; Mamet-Bratley MD
    Environ Mol Mutagen; 1994; 23(1):32-6. PubMed ID: 7510226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Action of intact AP (apurinic/apyrimidinic) sites and AP sites associated with breaks on the transcription of T7 coliphage DNA by Escherichia coli RNA polymerase.
    Flamée PA; Verly WG
    Biochem J; 1985 Jul; 229(1):173-81. PubMed ID: 2412545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of toxicity of 3-methyladenine for bacteriophage T7.
    Racine JF; Zhu Y; Mamet-Bratley MD
    Mutat Res; 1993 Oct; 294(3):285-98. PubMed ID: 7692268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro replication and repair of DNA containing a C2'-oxidized abasic site.
    Greenberg MM; Weledji YN; Kroeger KM; Kim J
    Biochemistry; 2004 Dec; 43(48):15217-22. PubMed ID: 15568814
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutations induced by bacteriophage T7 RNA polymerase and their effects on the composition of the T7 genome.
    Beletskii A; Grigoriev A; Joyce S; Bhagwat AS
    J Mol Biol; 2000 Jul; 300(5):1057-65. PubMed ID: 10903854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of abasic sites on bacteriophage T7 protein synthesis.
    Sanchez G; Racine JF; Mamet-Bratley MD
    Mutat Res; 1994 Sep; 325(1):39-45. PubMed ID: 7521011
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RNAII transcribed by IPTG-induced T7 RNA polymerase is non-functional as a replication primer for ColE1-type plasmids in Escherichia coli.
    Chao MY; Kan MC; Lin-Chao S
    Nucleic Acids Res; 1995 May; 23(10):1691-5. PubMed ID: 7540285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of inhibition of bacteriophage T7 RNA polymerase by T7 lysozyme.
    Zhang X; Studier FW
    J Mol Biol; 1997 May; 269(1):10-27. PubMed ID: 9192997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of T7 RNA polymerase in an optimized Escherichia coli coupled in vitro transcription-translation system. Application in regulatory studies and expression of long transcription units.
    Köhrer C; Mayer C; Gröbner P; Piendl W
    Eur J Biochem; 1996 Feb; 236(1):234-9. PubMed ID: 8617270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptional inhibition by an oxidized abasic site in DNA.
    Wang Y; Sheppard TL; Tornaletti S; Maeda LS; Hanawalt PC
    Chem Res Toxicol; 2006 Feb; 19(2):234-41. PubMed ID: 16485899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel analytical principle using AP site-mediated T7 RNA polymerase transcription regulation for sensing uracil-DNA glycosylase activity.
    Gao W; Xu J; Lian G; Wang X; Gong X; Zhou D; Chang J
    Analyst; 2020 Jun; 145(12):4321-4327. PubMed ID: 32432603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies on the interaction of T7 RNA polymerase with a DNA template containing a site-specifically placed psoralen cross-link. I. Characterization of elongation complexes.
    Sastry SS; Hearst JE
    J Mol Biol; 1991 Oct; 221(4):1091-110. PubMed ID: 1942044
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Site-specific benzo[a]pyrene diol epoxide-DNA adducts inhibit transcription elongation by bacteriophage T7 RNA polymerase.
    Choi DJ; Marino-Alessandri DJ; Geacintov NE; Scicchitano DA
    Biochemistry; 1994 Jan; 33(3):780-7. PubMed ID: 8292606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcription bypass or blockage at single-strand breaks on the DNA template strand: effect of different 3' and 5' flanking groups on the T7 RNA polymerase elongation complex.
    Zhou W; Doetsch PW
    Biochemistry; 1994 Dec; 33(49):14926-34. PubMed ID: 7993919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies of contacts between T7 RNA polymerase and its promoter reveal features in common with multisubunit RNA polymerases.
    Place C; Oddos J; Buc H; McAllister WT; Buckle M
    Biochemistry; 1999 Apr; 38(16):4948-57. PubMed ID: 10213596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Behavior of T7 RNA polymerase and mammalian RNA polymerase II at site-specific cisplatin adducts in the template DNA.
    Tornaletti S; Patrick SM; Turchi JJ; Hanawalt PC
    J Biol Chem; 2003 Sep; 278(37):35791-7. PubMed ID: 12829693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of halted T7 RNA polymerase elongation complexes reveals multiple factors that contribute to stability.
    Mentesana PE; Chin-Bow ST; Sousa R; McAllister WT
    J Mol Biol; 2000 Oct; 302(5):1049-62. PubMed ID: 11183774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binding affinity of T7 RNA polymerase to its promoter in the supercoiled and linearized DNA templates.
    Chen YC; Jeng ST
    Biosci Biotechnol Biochem; 2000 Jun; 64(6):1126-32. PubMed ID: 10923780
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Visualization of bacteriophage T7 RNA-polymerase complexes with DNA template in the process of transcription elongation].
    Lymans'kyĭ OP
    Ukr Biokhim Zh (1999); 2007; 79(1):94-103. PubMed ID: 18030738
    [TBL] [Abstract][Full Text] [Related]  

  • 20. T7 RNA polymerase bypass of large gaps on the template strand reveals a critical role of the nontemplate strand in elongation.
    Zhou W; Reines D; Doetsch PW
    Cell; 1995 Aug; 82(4):577-85. PubMed ID: 7664337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.