BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 7510856)

  • 1. Dual action of angiotensin II on coronary resistance in the isolated perfused rabbit heart.
    Pörsti I; Hecker M; Bassenge E; Busse R
    Naunyn Schmiedebergs Arch Pharmacol; 1993 Dec; 348(6):650-8. PubMed ID: 7510856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potentiation by ACE inhibitors of the dilator response to bradykinin in the coronary microcirculation: interaction at the receptor level.
    Hecker M; Pörsti I; Bara AT; Busse R
    Br J Pharmacol; 1994 Jan; 111(1):238-44. PubMed ID: 8012702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alterations of cyclo-oxygenase products and NO in responses to angiotensin II of resistance arteries from the spontaneously hypertensive rat.
    Côrtes SF; Andriantsitohaina R; Stoclet JC
    Br J Pharmacol; 1996 Dec; 119(8):1635-41. PubMed ID: 8982512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prostacyclin and nitric oxide contribute to the vasodilator action of acetylcholine and bradykinin in the intact rabbit coronary bed.
    Lamontagne D; König A; Bassenge E; Busse R
    J Cardiovasc Pharmacol; 1992 Oct; 20(4):652-7. PubMed ID: 1280723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of action of human calcitonin gene-related peptide in rabbit heart and in human mammary arteries.
    Raddino R; Pelà G; Manca C; Barbagallo M; D'Aloia A; Passeri M; Visioli O
    J Cardiovasc Pharmacol; 1997 Apr; 29(4):463-70. PubMed ID: 9156355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Divergent roles of angiotensin II AT1 and AT2 receptors in modulating coronary microvascular function.
    Zhang C; Hein TW; Wang W; Kuo L
    Circ Res; 2003 Feb; 92(3):322-9. PubMed ID: 12595345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AT2 antagonist-sensitive potentiation of angiotensin II-induced constriction by NO blockade and its dependence on endothelium and P450 eicosanoids in rat renal vasculature.
    Muller C; Endlich K; Helwig JJ
    Br J Pharmacol; 1998 Jul; 124(5):946-52. PubMed ID: 9692780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of angiotensin AT1 and AT2 receptors in mediating the renal effects of angiotensin II in the anaesthetized dog.
    Clark KL; Robertson MJ; Drew GM
    Br J Pharmacol; 1993 May; 109(1):148-56. PubMed ID: 8495237
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AT1 receptors mediate the release of prostaglandins in porcine smooth muscle cells and rat astrocytes.
    Leung KH; Chang RS; Lotti VJ; Roscoe WA; Smith RD; Timmermans PB; Chiu AT
    Am J Hypertens; 1992 Sep; 5(9):648-56. PubMed ID: 1418854
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel angiotensin II AT(1) receptor antagonist irbesartan prevents thromboxane A(2)-induced vasoconstriction in canine coronary arteries and human platelet aggregation.
    Li P; Fukuhara M; Diz DI; Ferrario CM; Brosnihan KB
    J Pharmacol Exp Ther; 2000 Jan; 292(1):238-46. PubMed ID: 10604953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pharmacological profile of a highly potent and long-acting angiotensin II receptor antagonist, 2-ethoxy-1-[[2'-(1H-tetrazol-5-yl)biphenyl-4- yl]methyl]-1H-benzimidazole-7-carboxylic acid (CV-11974), and its prodrug, (+/-)-1-(cyclohexyloxycarbonyloxy)-ethyl 2-ethoxy-1-[[2'-(1H-tetrazol-5- yl)biphenyl-4-yl]methyl]-1H-benzimidazole-7-carboxylate (TCV-116).
    Shibouta Y; Inada Y; Ojima M; Wada T; Noda M; Sanada T; Kubo K; Kohara Y; Naka T; Nishikawa K
    J Pharmacol Exp Ther; 1993 Jul; 266(1):114-20. PubMed ID: 8331552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of sulphidopeptide-leukotrienes by cell-cell interaction causes coronary vasoconstriction in isolated, cell-perfused heart of rabbit.
    Sala A; Rossoni G; Buccellati C; Berti F; Folco G; Maclouf J
    Br J Pharmacol; 1993 Nov; 110(3):1206-12. PubMed ID: 8298810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential effects of arginine vasopressin on isolated guinea pig heart function during perfusion at constant flow and constant pressure.
    Graf BM; Fischer B; Martin E; Bosnjak ZJ; Stowe DF
    J Cardiovasc Pharmacol; 1997 Jan; 29(1):1-7. PubMed ID: 9007663
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pharmacological profile of GR117289 in vitro: a novel, potent and specific non-peptide angiotensin AT1 receptor antagonist.
    Robertson MJ; Barnes JC; Drew GM; Clark KL; Marshall FH; Michel A; Middlemiss D; Ross BC; Scopes D; Dowle MD
    Br J Pharmacol; 1992 Dec; 107(4):1173-80. PubMed ID: 1467838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Species-related differences in inotropic effects of angiotensin II in mammalian ventricular muscle: receptors, subtypes and phosphoinositide hydrolysis.
    Ishihata A; Endoh M
    Br J Pharmacol; 1995 Jan; 114(2):447-53. PubMed ID: 7881743
    [TBL] [Abstract][Full Text] [Related]  

  • 16. BMS-180560, an insurmountable inhibitor of angiotensin II-stimulated responses: comparison with losartan and EXP3174.
    Dickinson KE; Cohen RB; Skwish S; Delaney CL; Serafino RP; Poss MA; Gu Z; Ryono DE; Moreland S; Powell JR
    Br J Pharmacol; 1994 Sep; 113(1):179-89. PubMed ID: 7812609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Angiotensin-(1-7) augments bradykinin-induced vasodilation by competing with ACE and releasing nitric oxide.
    Li P; Chappell MC; Ferrario CM; Brosnihan KB
    Hypertension; 1997 Jan; 29(1 Pt 2):394-400. PubMed ID: 9039133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hemodynamic effects of angiotensin II and the influence of angiotensin receptor antagonists in pithed rabbits.
    Zhang J; Pfaffendorf M; van Zwieten PA
    J Cardiovasc Pharmacol; 1995 May; 25(5):724-31. PubMed ID: 7630151
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential responses to angiotensin-(1-7) in the feline mesenteric and hindquarters vascular beds.
    Osei SY; Ahima RS; Minkes RK; Weaver JP; Khosla MC; Kadowitz PJ
    Eur J Pharmacol; 1993 Mar; 234(1):35-42. PubMed ID: 7682513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contribution of nitric oxide to coronary vasodilation during hypercapnic acidosis.
    Gurevicius J; Salem MR; Metwally AA; Silver JM; Crystal GJ
    Am J Physiol; 1995 Jan; 268(1 Pt 2):H39-47. PubMed ID: 7530920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.