These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 7510921)

  • 1. Influences of stimulation frequency and temperature on interval-force relationships in guinea-pig papillary muscles.
    Spencer CI; Mörner SE; Noble MI; Seed WA
    Acta Physiol Scand; 1994 Jan; 150(1):11-20. PubMed ID: 7510921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inotropic mechanisms of amrinone in papillary muscles from guinea-pig hearts.
    Mörner SE; Wohlfart B
    Acta Physiol Scand; 1990 Aug; 139(4):575-81. PubMed ID: 2248037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Myocardial force interval relationships: influence of external sodium and calcium, muscle length, muscle diameter and stimulation frequency.
    Mörner SE; Wohlfart B
    Acta Physiol Scand; 1992 Aug; 145(4):323-32. PubMed ID: 1382357
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationships between peak force, action potential duration and stimulus interval in rabbit myocardium.
    Wohlfart B
    Acta Physiol Scand; 1979 Aug; 106(4):395-409. PubMed ID: 495149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The action of 2,3-butane-dionemonoxime on the inotropic state in guinea-pig myocardium.
    Mörner SE; Wohlfart B
    Acta Physiol Scand; 1991 Jun; 142(2):211-9. PubMed ID: 1877370
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of mechanical alternans in rabbit papillary muscle.
    Wohlfart B
    Acta Physiol Scand; 1982 Aug; 115(4):405-14. PubMed ID: 6184949
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monensin-induced reversal of positive force-frequency relationship in cardiac muscle: role of intracellular sodium in rest-dependent potentiation of contraction.
    Mubagwa K; Lin W; Sipido K; Bosteels S; Flameng W
    J Mol Cell Cardiol; 1997 Mar; 29(3):977-89. PubMed ID: 9152859
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms for hypothermia-induced increase in contractile force studied by mechanical restitution and post-rest contractions in guinea-pig papillary muscle.
    Bjørnstad H; Tande PM; Refsum H
    Acta Physiol Scand; 1993 Jul; 148(3):253-64. PubMed ID: 7692697
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The contractile and electrophysiological effects of rolipram in guinea-pig papillary muscles and isolated ventricular myocytes.
    Mörner SE; Arlock P
    Acta Physiol Scand; 1994 Feb; 150(2):117-24. PubMed ID: 8191890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical restitution of the rat papillary muscle.
    Ragnarsdóttir K; Wohlfart B; Jóhannsson M
    Acta Physiol Scand; 1982 Jun; 115(2):183-91. PubMed ID: 7136811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effect of the pacing interval and extrasystole on amplitude and damping of diastolic oscillations in the rabbit papillary muscle].
    Wussling M; Szymanski G
    Acta Biol Med Ger; 1980; 39(5):591-8. PubMed ID: 6160708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical and electrophysiological effects of milrinone on the force-frequency relationship in mammalian myocardium.
    Mörner SE; Arlock P
    Acta Physiol Scand; 1994 Feb; 150(2):125-32. PubMed ID: 8191891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of the inotropic effect of prenalterol in papillary muscles from guinea-pig hearts.
    Wohlfart B; Khan AR
    Acta Physiol Scand; 1987 Jun; 130(2):187-91. PubMed ID: 3604708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of nifedipine and low [Ca2+] on mechanical restitution during hypothermia in guinea pig papillary muscles.
    Spencer CI; Mörner SE; Noble MI; Seed WA
    Basic Res Cardiol; 1993; 88(2):111-9. PubMed ID: 8389120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of temperature on Ca(2+)-dependent and mechanical modulators of relaxation in mammalian myocardium.
    Dobrunz LE; Berman MR
    J Mol Cell Cardiol; 1994 Feb; 26(2):243-50. PubMed ID: 8006985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of temperature and caffeine on the interval-strength relationship of mammalian ventricular myocardium.
    Penna M; Valenzuela MI
    Arzneimittelforschung; 1977; 27(3):583-9. PubMed ID: 68780
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrical and mechanical responses of the intact rabbit heart in relation to the excitation interval. A comparison with the isolated papillary muscle preparation.
    Wohlfart B; Elzinga G
    Acta Physiol Scand; 1982 Jul; 115(3):331-40. PubMed ID: 6184947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Frequency-force relationship in guinea-pig ventricular myocardium as influenced by magnesium.
    Vierling W; Reiter M
    Naunyn Schmiedebergs Arch Pharmacol; 1975; 289(2):111-25. PubMed ID: 1165789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased SR Ca2+ cycling contributes to improved contractile performance in SERCA2a-overexpressing transgenic rats.
    Maier LS; Wahl-Schott C; Horn W; Weichert S; Pagel C; Wagner S; Dybkova N; Müller OJ; Näbauer M; Franz WM; Pieske B
    Cardiovasc Res; 2005 Sep; 67(4):636-46. PubMed ID: 15932750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differences in Ca(2+)-handling and sarcoplasmic reticulum Ca(2+)-content in isolated rat and rabbit myocardium.
    Maier LS; Bers DM; Pieske B
    J Mol Cell Cardiol; 2000 Dec; 32(12):2249-58. PubMed ID: 11113000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.