These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 7511018)

  • 21. Modification by lithium of transmitter release at the neuromuscular junction of the frog.
    Branisteanu DD; Volle RL
    J Pharmacol Exp Ther; 1975 Aug; 194(2):362-72. PubMed ID: 239225
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Vesicle-associated proteins and quantal release at single active zones of amphibian (Bufo marinus) motor-nerve terminals.
    Macleod GT; Gan J; Bennett MR
    J Neurophysiol; 1999 Sep; 82(3):1133-46. PubMed ID: 10482733
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Profiles of evoked release along the length of frog motor nerve terminals.
    D'Alonzo AJ; Grinnell AD
    J Physiol; 1985 Feb; 359():235-58. PubMed ID: 2860241
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Adrenergic receptors control frequency-dependent switching of the exocytosis mode between "full-collapse" and "kiss-and-run" in murine motor nerve terminal.
    Petrov AM; Zakirjanova GF; Kovyazina IV; Tsentsevitsky AN; Bukharaeva EA
    Life Sci; 2022 May; 296():120433. PubMed ID: 35219696
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inverse relationship between transmitter release and terminal length in synapses on frog muscle fibers of uniform input resistance.
    Nudell BM; Grinnell AD
    J Neurosci; 1982 Feb; 2(2):216-24. PubMed ID: 6121015
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The structural organization of the readily releasable pool of synaptic vesicles.
    Rizzoli SO; Betz WJ
    Science; 2004 Mar; 303(5666):2037-9. PubMed ID: 15044806
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Recruitment of synapses in the neurosecretory process during long-term facilitation at the lobster neuromuscular junction.
    Kapitsky S; Zueva L; Akbergenova Y; Bykhovskaia M
    Neuroscience; 2005; 134(4):1261-72. PubMed ID: 16084655
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recycling of synaptic vesicles at the frog neuromuscular junction in the presence of strontium.
    Guatimosim C; Romano-Silva MA; Gomez MV; Prado MA
    J Neurochem; 1998 Jun; 70(6):2477-83. PubMed ID: 9603212
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Membrane cholesterol regulates different modes of synaptic vesicle release and retrieval at the frog neuromuscular junction.
    Rodrigues HA; Lima RF; Fonseca Mde C; Amaral EA; Martinelli PM; Naves LA; Gomez MV; Kushmerick C; Prado MA; Guatimosim C
    Eur J Neurosci; 2013 Oct; 38(7):2978-87. PubMed ID: 23841903
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of 5α-cholestan-3-one on the synaptic vesicle cycle at the mouse neuromuscular junction.
    Kasimov MR; Giniatullin AR; Zefirov AL; Petrov AM
    Biochim Biophys Acta; 2015 May; 1851(5):674-85. PubMed ID: 25725358
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transmitter release properties along regenerated nerve processes at the frog neuromuscular junction.
    Decino P
    J Neurosci; 1981 Mar; 1(3):308-17. PubMed ID: 6114997
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transmitter release during repetitive stimulation: selective changes produced by Sr2+ and Ba2+.
    Zengel JE; Magleby KL
    Science; 1977 Jul; 197(4298):67-9. PubMed ID: 17160
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Polyneuronal innervation and quantal transmitter release in formamide-treated frog sartorius muscles.
    Herrera AA
    J Physiol; 1984 Oct; 355():267-80. PubMed ID: 6149312
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Empty synaptic vesicles recycle and undergo exocytosis at vesamicol-treated motor nerve terminals.
    Parsons RL; Calupca MA; Merriam LA; Prior C
    J Neurophysiol; 1999 Jun; 81(6):2696-700. PubMed ID: 10368389
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transmitter secretion varies between visualized release sites at amphibian neuromuscular junctions.
    Bennett M; Jones P; Lavidis N
    Neurosci Lett; 1986 Apr; 65(3):311-5. PubMed ID: 2872629
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Distribution and functioning of mediator release sites in the neuromuscular junction of the frog].
    Zefirov AL
    Neirofiziologiia; 1985; 17(2):152-60. PubMed ID: 2860572
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Non-uniform responses to Ca2+ along the frog neuromuscular junction: effects on the probability of spontaneous and evoked transmitter release.
    Robitaille R; Tremblay JP
    Neuroscience; 1991; 40(2):571-85. PubMed ID: 1674115
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effects of prolonged repetitive stimulation in hemicholinium on the frog neuromuscular junction.
    Ceccarelli B; Hurlbut WP
    J Physiol; 1975 May; 247(1):163-88. PubMed ID: 1079538
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ouabain evokes exocytosis dependent on ryanodine and mitochondrial calcium stores that is not followed by compensatory endocytosis at the neuromuscular junction.
    Amaral E; Leite LF; Gomez MV; Prado MA; Guatimosim C
    Neurochem Int; 2009 Nov; 55(6):406-13. PubMed ID: 19406178
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The regulation of synaptic strength within motor units of the frog cutaneous pectoris muscle.
    Trussell LO; Grinnell AD
    J Neurosci; 1985 Jan; 5(1):243-54. PubMed ID: 2856934
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.