These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Contribution of proline residues in the membrane-spanning domains of cystic fibrosis transmembrane conductance regulator to chloride channel function. Sheppard DN; Travis SM; Ishihara H; Welsh MJ J Biol Chem; 1996 Jun; 271(25):14995-5001. PubMed ID: 8663008 [TBL] [Abstract][Full Text] [Related]
6. Effect of deleting the R domain on CFTR-generated chloride channels. Rich DP; Gregory RJ; Anderson MP; Manavalan P; Smith AE; Welsh MJ Science; 1991 Jul; 253(5016):205-7. PubMed ID: 1712985 [TBL] [Abstract][Full Text] [Related]
7. Effect of deletion mutations on the function of CFTR chloride channels. Rich DP; Gregory RJ; Cheng SH; Smith AE; Welsh MJ Recept Channels; 1993; 1(3):221-32. PubMed ID: 7522901 [TBL] [Abstract][Full Text] [Related]
8. Regulation of the cystic fibrosis transmembrane conductance regulator Cl- channel by negative charge in the R domain. Rich DP; Berger HA; Cheng SH; Travis SM; Saxena M; Smith AE; Welsh MJ J Biol Chem; 1993 Sep; 268(27):20259-67. PubMed ID: 7690753 [TBL] [Abstract][Full Text] [Related]
9. Both CFTR and outwardly rectifying chloride channels contribute to cAMP-stimulated whole cell chloride currents. Schwiebert EM; Flotte T; Cutting GR; Guggino WB Am J Physiol; 1994 May; 266(5 Pt 1):C1464-77. PubMed ID: 7515570 [TBL] [Abstract][Full Text] [Related]
10. Severed molecules functionally define the boundaries of the cystic fibrosis transmembrane conductance regulator's NH(2)-terminal nucleotide binding domain. Chan KW; Csanády L; Seto-Young D; Nairn AC; Gadsby DC J Gen Physiol; 2000 Aug; 116(2):163-80. PubMed ID: 10919864 [TBL] [Abstract][Full Text] [Related]
11. Direct sensing of intracellular pH by the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel. Chen JH; Cai Z; Sheppard DN J Biol Chem; 2009 Dec; 284(51):35495-506. PubMed ID: 19837660 [TBL] [Abstract][Full Text] [Related]
12. CFTR in Calu-3 human airway cells: channel properties and role in cAMP-activated Cl- conductance. Haws C; Finkbeiner WE; Widdicombe JH; Wine JJ Am J Physiol; 1994 May; 266(5 Pt 1):L502-12. PubMed ID: 7515579 [TBL] [Abstract][Full Text] [Related]
13. Functions of the cystic fibrosis transmembrane conductance regulator protein. Frizzell RA Am J Respir Crit Care Med; 1995 Mar; 151(3 Pt 2):S54-8. PubMed ID: 7533606 [TBL] [Abstract][Full Text] [Related]
14. Identification and regulation of the cystic fibrosis transmembrane conductance regulator-generated chloride channel. Berger HA; Anderson MP; Gregory RJ; Thompson S; Howard PW; Maurer RA; Mulligan R; Smith AE; Welsh MJ J Clin Invest; 1991 Oct; 88(4):1422-31. PubMed ID: 1717515 [TBL] [Abstract][Full Text] [Related]
15. The CFTR chloride channel of mammalian heart. Gadsby DC; Nagel G; Hwang TC Annu Rev Physiol; 1995; 57():387-416. PubMed ID: 7539989 [No Abstract] [Full Text] [Related]
16. 5'-Adenylylimidodiphosphate does not activate CFTR chloride channels in cell-free patches of membrane. Carson MR; Welsh MJ Am J Physiol; 1993 Jul; 265(1 Pt 1):L27-32. PubMed ID: 7687826 [TBL] [Abstract][Full Text] [Related]
17. Regulation by ATP and ADP of CFTR chloride channels that contain mutant nucleotide-binding domains. Anderson MP; Welsh MJ Science; 1992 Sep; 257(5077):1701-4. PubMed ID: 1382316 [TBL] [Abstract][Full Text] [Related]
18. Regulation of the gating of cystic fibrosis transmembrane conductance regulator C1 channels by phosphorylation and ATP hydrolysis. Hwang TC; Nagel G; Nairn AC; Gadsby DC Proc Natl Acad Sci U S A; 1994 May; 91(11):4698-702. PubMed ID: 7515176 [TBL] [Abstract][Full Text] [Related]
19. Protein kinase A regulates ATP hydrolysis and dimerization by a CFTR (cystic fibrosis transmembrane conductance regulator) domain. Howell LD; Borchardt R; Kole J; Kaz AM; Randak C; Cohn JA Biochem J; 2004 Feb; 378(Pt 1):151-9. PubMed ID: 14602047 [TBL] [Abstract][Full Text] [Related]