These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 7511414)
21. A functional R domain from cystic fibrosis transmembrane conductance regulator is predominantly unstructured in solution. Ostedgaard LS; Baldursson O; Vermeer DW; Welsh MJ; Robertson AD Proc Natl Acad Sci U S A; 2000 May; 97(10):5657-62. PubMed ID: 10792060 [TBL] [Abstract][Full Text] [Related]
22. A single conductance pore for chloride ions formed by two cystic fibrosis transmembrane conductance regulator molecules. Zerhusen B; Zhao J; Xie J; Davis PB; Ma J J Biol Chem; 1999 Mar; 274(12):7627-30. PubMed ID: 10075649 [TBL] [Abstract][Full Text] [Related]
24. Functional characterization of the CFTR R domain using CFTR/MDR1 hybrid and deletion constructs. Vankeerberghen A; Lin W; Jaspers M; Cuppens H; Nilius B; Cassiman JJ Biochemistry; 1999 Nov; 38(45):14988-98. PubMed ID: 10555981 [TBL] [Abstract][Full Text] [Related]
25. AMP-activated protein kinase phosphorylation of the R domain inhibits PKA stimulation of CFTR. King JD; Fitch AC; Lee JK; McCane JE; Mak DO; Foskett JK; Hallows KR Am J Physiol Cell Physiol; 2009 Jul; 297(1):C94-101. PubMed ID: 19419994 [TBL] [Abstract][Full Text] [Related]
26. Identification of protein kinase A phosphorylation sites on NBD1 and R domains of CFTR using electrospray mass spectrometry with selective phosphate ion monitoring. Townsend RR; Lipniunas PH; Tulk BM; Verkman AS Protein Sci; 1996 Sep; 5(9):1865-73. PubMed ID: 8880910 [TBL] [Abstract][Full Text] [Related]
27. Prolonged nonhydrolytic interaction of nucleotide with CFTR's NH2-terminal nucleotide binding domain and its role in channel gating. Basso C; Vergani P; Nairn AC; Gadsby DC J Gen Physiol; 2003 Sep; 122(3):333-48. PubMed ID: 12939393 [TBL] [Abstract][Full Text] [Related]
28. Functional roles of nonconserved structural segments in CFTR's NH2-terminal nucleotide binding domain. Csanády L; Chan KW; Nairn AC; Gadsby DC J Gen Physiol; 2005 Jan; 125(1):43-55. PubMed ID: 15596536 [TBL] [Abstract][Full Text] [Related]
29. Phosphorylation-induced conformational changes of cystic fibrosis transmembrane conductance regulator monitored by attenuated total reflection-Fourier transform IR spectroscopy and fluorescence spectroscopy. Grimard V; Li C; Ramjeesingh M; Bear CE; Goormaghtigh E; Ruysschaert JM J Biol Chem; 2004 Feb; 279(7):5528-36. PubMed ID: 14660584 [TBL] [Abstract][Full Text] [Related]
30. Potentiation of effect of PKA stimulation of Xenopus CFTR by activation of PKC: role of NBD2. Chen Y; Button B; Altenberg GA; Reuss L Am J Physiol Cell Physiol; 2004 Nov; 287(5):C1436-44. PubMed ID: 15282191 [TBL] [Abstract][Full Text] [Related]
31. Attenuation of Phosphorylation-dependent Activation of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) by Disease-causing Mutations at the Transmission Interface. Chin S; Yang D; Miles AJ; Eckford PDW; Molinski S; Wallace BA; Bear CE J Biol Chem; 2017 Feb; 292(5):1988-1999. PubMed ID: 28003367 [TBL] [Abstract][Full Text] [Related]
32. R-domain interactions with distal regions of CFTR lead to phosphorylation and activation. King SA; Sorscher EJ Biochemistry; 2000 Aug; 39(32):9868-75. PubMed ID: 10933805 [TBL] [Abstract][Full Text] [Related]
33. The actin filament disrupter cytochalasin D activates the recombinant cystic fibrosis transmembrane conductance regulator Cl- channel in mouse 3T3 fibroblasts. Fischer H; Illek B; Machen TE J Physiol; 1995 Dec; 489 ( Pt 3)(Pt 3):745-54. PubMed ID: 8788939 [TBL] [Abstract][Full Text] [Related]
35. Regulation of CFTR trafficking by its R domain. Lewarchik CM; Peters KW; Qi J; Frizzell RA J Biol Chem; 2008 Oct; 283(42):28401-12. PubMed ID: 18694937 [TBL] [Abstract][Full Text] [Related]
36. Computational studies reveal phosphorylation-dependent changes in the unstructured R domain of CFTR. Hegedus T; Serohijos AW; Dokholyan NV; He L; Riordan JR J Mol Biol; 2008 May; 378(5):1052-63. PubMed ID: 18423665 [TBL] [Abstract][Full Text] [Related]
37. Gating of CFTR by the STAS domain of SLC26 transporters. Ko SB; Zeng W; Dorwart MR; Luo X; Kim KH; Millen L; Goto H; Naruse S; Soyombo A; Thomas PJ; Muallem S Nat Cell Biol; 2004 Apr; 6(4):343-50. PubMed ID: 15048129 [TBL] [Abstract][Full Text] [Related]
38. The major cystic fibrosis causing mutation exhibits defective propensity for phosphorylation. Pasyk S; Molinski S; Ahmadi S; Ramjeesingh M; Huan LJ; Chin S; Du K; Yeger H; Taylor P; Moran MF; Bear CE Proteomics; 2015 Jan; 15(2-3):447-61. PubMed ID: 25330774 [TBL] [Abstract][Full Text] [Related]
39. PKC-mediated stimulation of amphibian CFTR depends on a single phosphorylation consensus site. insertion of this site confers PKC sensitivity to human CFTR. Button B; Reuss L; Altenberg GA J Gen Physiol; 2001 May; 117(5):457-68. PubMed ID: 11331356 [TBL] [Abstract][Full Text] [Related]
40. Basal expression of the cystic fibrosis transmembrane conductance regulator gene is dependent on protein kinase A activity. McDonald RA; Matthews RP; Idzerda RL; McKnight GS Proc Natl Acad Sci U S A; 1995 Aug; 92(16):7560-4. PubMed ID: 7543684 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]