These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 7511414)

  • 41. PKC phosphorylation modulates PKA-dependent binding of the R domain to other domains of CFTR.
    Seavilleklein G; Amer N; Evagelidis A; Chappe F; Irvine T; Hanrahan JW; Chappe V
    Am J Physiol Cell Physiol; 2008 Nov; 295(5):C1366-75. PubMed ID: 18799655
    [TBL] [Abstract][Full Text] [Related]  

  • 42. ATP alters current fluctuations of cystic fibrosis transmembrane conductance regulator: evidence for a three-state activation mechanism.
    Venglarik CJ; Schultz BD; Frizzell RA; Bridges RJ
    J Gen Physiol; 1994 Jul; 104(1):123-46. PubMed ID: 7525859
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Role of individual R domain phosphorylation sites in CFTR regulation by protein kinase A.
    Hegedus T; Aleksandrov A; Mengos A; Cui L; Jensen TJ; Riordan JR
    Biochim Biophys Acta; 2009 Jun; 1788(6):1341-9. PubMed ID: 19328185
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Stimulation of CFTR activity by its phosphorylated R domain.
    Winter MC; Welsh MJ
    Nature; 1997 Sep; 389(6648):294-6. PubMed ID: 9305845
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Removal of the Fe(iii) site promotes activation of the human cystic fibrosis transmembrane conductance regulator by high-affinity Zn(ii) binding.
    Wang G
    Metallomics; 2018 Feb; 10(2):240-247. PubMed ID: 29372915
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Chloride channel and chloride conductance regulator domains of CFTR, the cystic fibrosis transmembrane conductance regulator.
    Schwiebert EM; Morales MM; Devidas S; Egan ME; Guggino WB
    Proc Natl Acad Sci U S A; 1998 Mar; 95(5):2674-9. PubMed ID: 9482946
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Capsaicin potentiates wild-type and mutant cystic fibrosis transmembrane conductance regulator chloride-channel currents.
    Ai T; Bompadre SG; Wang X; Hu S; Li M; Hwang TC
    Mol Pharmacol; 2004 Jun; 65(6):1415-26. PubMed ID: 15155835
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dual regulation of cardiac Na+-K+ pumps and CFTR Cl- channels by protein kinases A and C.
    Erlenkamp S; Glitsch HG; Kockskämper J
    Pflugers Arch; 2002 May; 444(1-2):251-62. PubMed ID: 11976939
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Functions of the cystic fibrosis transmembrane conductance regulator protein.
    Frizzell RA
    Am J Respir Crit Care Med; 1995 Mar; 151(3 Pt 2):S54-8. PubMed ID: 7533606
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The cystic fibrosis mutation (delta F508) does not influence the chloride channel activity of CFTR.
    Li C; Ramjeesingh M; Reyes E; Jensen T; Chang X; Rommens JM; Bear CE
    Nat Genet; 1993 Apr; 3(4):311-6. PubMed ID: 7526932
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Structural models of CFTR-AMPK and CFTR-PKA interactions: R-domain flexibility is a key factor in CFTR regulation.
    Siwiak M; Edelman A; Zielenkiewicz P
    J Mol Model; 2012 Jan; 18(1):83-90. PubMed ID: 21455600
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Synergistic activation of guinea-pig cardiac cystic fibrosis transmembrane conductance regulator by the tyrosine kinase inhibitor genistein and cAMP.
    Shuba LM; McDonald TF
    J Physiol; 1997 Nov; 505 ( Pt 1)(Pt 1):23-40. PubMed ID: 9409469
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Localization of cystic fibrosis transmembrane conductance regulator in chloride secretory epithelia.
    Denning GM; Ostedgaard LS; Cheng SH; Smith AE; Welsh MJ
    J Clin Invest; 1992 Jan; 89(1):339-49. PubMed ID: 1370301
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Phosphorylation of the R domain by cAMP-dependent protein kinase regulates the CFTR chloride channel.
    Cheng SH; Rich DP; Marshall J; Gregory RJ; Welsh MJ; Smith AE
    Cell; 1991 Sep; 66(5):1027-36. PubMed ID: 1716180
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Activation of the cystic fibrosis transmembrane conductance regulator by cGMP in the human colonic cancer cell line, Caco-2.
    Tien XY; Brasitus TA; Kaetzel MA; Dedman JR; Nelson DJ
    J Biol Chem; 1994 Jan; 269(1):51-4. PubMed ID: 7506258
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Potentiation of cystic fibrosis transmembrane conductance regulator (CFTR) Cl- currents by the chemical solvent tetrahydrofuran.
    Hughes LK; Ju M; Sheppard DN
    Mol Membr Biol; 2008 Sep; 25(6-7):528-38. PubMed ID: 18989824
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A cluster of negative charges at the amino terminal tail of CFTR regulates ATP-dependent channel gating.
    Fu J; Ji HL; Naren AP; Kirk KL
    J Physiol; 2001 Oct; 536(Pt 2):459-70. PubMed ID: 11600681
    [TBL] [Abstract][Full Text] [Related]  

  • 58. General anesthetic octanol and related compounds activate wild-type and delF508 cystic fibrosis chloride channels.
    Marcet B; Becq F; Norez C; Delmas P; Verrier B
    Br J Pharmacol; 2004 Mar; 141(6):905-14. PubMed ID: 14967738
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Processing of mutant cystic fibrosis transmembrane conductance regulator is temperature-sensitive.
    Denning GM; Anderson MP; Amara JF; Marshall J; Smith AE; Welsh MJ
    Nature; 1992 Aug; 358(6389):761-4. PubMed ID: 1380673
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Prostaglandin F2alpha stimulates CFTR activity by PKA- and PKC-dependent phosphorylation.
    Yurko-Mauro KA; Reenstra WW
    Am J Physiol; 1998 Sep; 275(3):C653-60. PubMed ID: 9730948
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.