BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 7511593)

  • 1. Interleukin-4 stimulates cGMP production by IFN-gamma-activated human monocytes. Involvement of the nitric oxide synthase pathway.
    Kolb JP; Paul-Eugene N; Damais C; Yamaoka K; Drapier JC; Dugas B
    J Biol Chem; 1994 Apr; 269(13):9811-6. PubMed ID: 7511593
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interleukin 1 activates soluble guanylate cyclase in human vascular smooth muscle cells through a novel nitric oxide-independent pathway.
    Beasley D; McGuiggin M
    J Exp Med; 1994 Jan; 179(1):71-80. PubMed ID: 7505803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interleukin 1 induces prolonged L-arginine-dependent cyclic guanosine monophosphate and nitrite production in rat vascular smooth muscle cells.
    Beasley D; Schwartz JH; Brenner BM
    J Clin Invest; 1991 Feb; 87(2):602-8. PubMed ID: 1671393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. L-arginine stimulates cyclic guanosine 3',5'-monophosphate formation in rat islets of Langerhans and RINm5F insulinoma cells: evidence for L-arginine:nitric oxide synthase.
    Laychock SG; Modica ME; Cavanaugh CT
    Endocrinology; 1991 Dec; 129(6):3043-52. PubMed ID: 1683279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitric oxide inhibits indoleamine 2,3-dioxygenase activity in interferon-gamma primed mononuclear phagocytes.
    Thomas SR; Mohr D; Stocker R
    J Biol Chem; 1994 May; 269(20):14457-64. PubMed ID: 7514170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterogenous nitrite production by IL-4-stimulated human monocytes and peripheral blood mononuclear cells.
    Paul-Eugène N; Kolb JP; Damais C; Dugas B
    Immunol Lett; 1994 Sep; 42(1-2):31-4. PubMed ID: 7530231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insulin increases guanosine-3',5'-cyclic monophosphate in human platelets. A mechanism involved in the insulin anti-aggregating effect.
    Trovati M; Massucco P; Mattiello L; Mularoni E; Cavalot F; Anfossi G
    Diabetes; 1994 Aug; 43(8):1015-9. PubMed ID: 7518780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitric oxide as a signal in thyroid.
    Esteves RZ; van Sande J; Dumont JE
    Mol Cell Endocrinol; 1992 Dec; 90(1):R1-3. PubMed ID: 1284493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tumor necrosis factor alpha activates soluble guanylate cyclase in bovine glomerular mesangial cells via an L-arginine-dependent mechanism.
    Marsden PA; Ballermann BJ
    J Exp Med; 1990 Dec; 172(6):1843-52. PubMed ID: 1979590
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ligation of CD23 activates soluble guanylate cyclase in human monocytes via an L-arginine-dependent mechanism.
    Paul-Eugène N; Kolb JP; Sarfati M; Arock M; Ouaaz F; Debré P; Mossalayi DM; Dugas B
    J Leukoc Biol; 1995 Jan; 57(1):160-7. PubMed ID: 7829968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endothelin (ET)-3 stimulates cyclic guanosine 3',5'-monophosphate production via ETB receptor by producing nitric oxide in isolated rat glomerulus, and in cultured rat mesangial cells.
    Owada A; Tomita K; Terada Y; Sakamoto H; Nonoguchi H; Marumo F
    J Clin Invest; 1994 Feb; 93(2):556-63. PubMed ID: 7509343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vasoactive intestinal peptide stimulation of cyclic guanosine monophosphate formation: further evidence for a role of nitric oxide synthase and cytosolic guanylate cyclase in rat pinealocytes.
    Spessert R
    Endocrinology; 1993 Jun; 132(6):2513-7. PubMed ID: 7684978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibitors of nitric oxide synthase attenuate human neutrophil chemotaxis in vitro.
    Belenky SN; Robbins RA; Rennard SI; Gossman GL; Nelson KJ; Rubinstein I
    J Lab Clin Med; 1993 Oct; 122(4):388-94. PubMed ID: 7693839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A cellular mechanism for nitric oxide-mediated cholinergic control of mammalian heart rate.
    Han X; Shimoni Y; Giles WR
    J Gen Physiol; 1995 Jul; 106(1):45-65. PubMed ID: 7494138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitric oxide selectively decreases interferon-gamma expression by activated human T lymphocytes via a cGMP-independent mechanism.
    Roozendaal R; Vellenga E; Postma DS; De Monchy JG; Kauffman HF
    Immunology; 1999 Nov; 98(3):393-9. PubMed ID: 10583599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Possible role of nitric oxide in catecholamine secretion by chromaffin cells in the presence and absence of cultured endothelial cells.
    Torres M; Ceballos G; Rubio R
    J Neurochem; 1994 Sep; 63(3):988-96. PubMed ID: 7519669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of nitric oxide in control of prolactin release by the adenohypophysis.
    Duvilanski BH; Zambruno C; Seilicovich A; Pisera D; Lasaga M; Diaz MC; Belova N; Rettori V; McCann SM
    Proc Natl Acad Sci U S A; 1995 Jan; 92(1):170-4. PubMed ID: 7529411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Induction of nitric oxide release by interferon-gamma inhibits vasodilation and cyclic GMP increase in bovine isolated mesenteric arteries.
    De Kimpe SJ; Van Heuven-Nolsen D; van Amsterdam JG; Radomski MW; Nijkamp FP
    J Pharmacol Exp Ther; 1994 Feb; 268(2):910-5. PubMed ID: 7509393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitric oxide synthase inhibitors attenuate human monocyte chemotaxis in vitro.
    Belenky SN; Robbins RA; Rubinstein I
    J Leukoc Biol; 1993 May; 53(5):498-503. PubMed ID: 7684763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitric oxide enhances PGI(2)production by human pulmonary artery smooth muscle cells.
    Wen F; Watanabe K; Yoshida M
    Prostaglandins Leukot Essent Fatty Acids; 2000 Jun; 62(6):369-78. PubMed ID: 10913230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.