These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
295 related articles for article (PubMed ID: 7511775)
21. Roles of the three transcriptional attenuators of the Bacillus subtilis pyrimidine biosynthetic operon in the regulation of its expression. Lu Y; Turner RJ; Switzer RL J Bacteriol; 1995 Mar; 177(5):1315-25. PubMed ID: 7868607 [TBL] [Abstract][Full Text] [Related]
23. Phosphorylation of Spo0A activates its stimulation of in vitro transcription from the Bacillus subtilis spoIIG operon. Bird TH; Grimsley JK; Hoch JA; Spiegelman GB Mol Microbiol; 1993 Aug; 9(4):741-9. PubMed ID: 8231806 [TBL] [Abstract][Full Text] [Related]
24. Parallel pathways of repression and antirepression governing the transition to stationary phase in Bacillus subtilis. Banse AV; Chastanet A; Rahn-Lee L; Hobbs EC; Losick R Proc Natl Acad Sci U S A; 2008 Oct; 105(40):15547-52. PubMed ID: 18840696 [TBL] [Abstract][Full Text] [Related]
25. High- and low-threshold genes in the Spo0A regulon of Bacillus subtilis. Fujita M; González-Pastor JE; Losick R J Bacteriol; 2005 Feb; 187(4):1357-68. PubMed ID: 15687200 [TBL] [Abstract][Full Text] [Related]
26. In Bacillus subtilis DegU-P is a positive regulator of the osmotic response. Ruzal SM; Sanchez-Rivas C Curr Microbiol; 1998 Dec; 37(6):368-72. PubMed ID: 9806973 [TBL] [Abstract][Full Text] [Related]
27. Identification of AbrB-regulated genes involved in biofilm formation by Bacillus subtilis. Hamon MA; Stanley NR; Britton RA; Grossman AD; Lazazzera BA Mol Microbiol; 2004 May; 52(3):847-60. PubMed ID: 15101989 [TBL] [Abstract][Full Text] [Related]
28. Gene expression in single cells of Bacillus subtilis: evidence that a threshold mechanism controls the initiation of sporulation. Chung JD; Stephanopoulos G; Ireton K; Grossman AD J Bacteriol; 1994 Apr; 176(7):1977-84. PubMed ID: 8144465 [TBL] [Abstract][Full Text] [Related]
29. Construction of Bacillus subtilis strains carrying the transcriptional bgaB fusion with the promoter region of each rrn operon and their differential transcription during spore development. Koga K; Ikegami A; Nakasone K; Murayama R; Akanuma G; Natori Y; Nanamiya H; Kawamura F J Gen Appl Microbiol; 2006 Apr; 52(2):119-24. PubMed ID: 16778356 [No Abstract] [Full Text] [Related]
30. A new mutation in spo0A with intragenic suppressors in the effector domain. Schmeisser F; Brannigan JA; Lewis RJ; Wilkinson AJ; Youngman P; Barák I FEMS Microbiol Lett; 2000 Apr; 185(2):123-8. PubMed ID: 10754235 [TBL] [Abstract][Full Text] [Related]
31. Feedback loops involving Spo0A and AbrB in in vitro transcription of the genes involved in the initiation of sporulation in Bacillus subtilis. Fujita M; Sadaie Y J Biochem; 1998 Jul; 124(1):98-104. PubMed ID: 9644251 [TBL] [Abstract][Full Text] [Related]
32. Global regulatory systems operating in Bacilysin biosynthesis in Bacillus subtilis. Köroğlu TE; Oğülür I; Mutlu S; Yazgan-Karataş A; Ozcengiz G J Mol Microbiol Biotechnol; 2011; 20(3):144-55. PubMed ID: 21709425 [TBL] [Abstract][Full Text] [Related]
33. Isolation and characterization of Bacillus subtilis groE regulatory mutants: evidence for orf39 in the dnaK operon as a repressor gene in regulating the expression of both groE and dnaK. Yuan G; Wong SL J Bacteriol; 1995 Nov; 177(22):6462-8. PubMed ID: 7592421 [TBL] [Abstract][Full Text] [Related]
34. Novel methods for genetic transformation of natural Bacillus subtilis isolates used to study the regulation of the mycosubtilin and surfactin synthetases. Duitman EH; Wyczawski D; Boven LG; Venema G; Kuipers OP; Hamoen LW Appl Environ Microbiol; 2007 Jun; 73(11):3490-6. PubMed ID: 17416694 [TBL] [Abstract][Full Text] [Related]
35. Expression of the rocDEF operon involved in arginine catabolism in Bacillus subtilis. Gardan R; Rapoport G; Débarbouillé M J Mol Biol; 1995 Jun; 249(5):843-56. PubMed ID: 7540694 [TBL] [Abstract][Full Text] [Related]
36. Sporulation operon spoIVF and the characterization of mutations that uncouple mother-cell from forespore gene expression in Bacillus subtilis. Cutting S; Roels S; Losick R J Mol Biol; 1991 Oct; 221(4):1237-56. PubMed ID: 1942049 [TBL] [Abstract][Full Text] [Related]
37. The Spo0A regulon of Bacillus subtilis. Molle V; Fujita M; Jensen ST; Eichenberger P; González-Pastor JE; Liu JS; Losick R Mol Microbiol; 2003 Dec; 50(5):1683-701. PubMed ID: 14651647 [TBL] [Abstract][Full Text] [Related]
38. Fluctuations in spo0A transcription control rare developmental transitions in Bacillus subtilis. Mirouze N; Prepiak P; Dubnau D PLoS Genet; 2011 Apr; 7(4):e1002048. PubMed ID: 21552330 [TBL] [Abstract][Full Text] [Related]
39. The kdgRKAT operon of Bacillus subtilis: detection of the transcript and regulation by the kdgR and ccpA genes. Pujic P; Dervyn R; Sorokin A; Ehrlich SD Microbiology (Reading); 1998 Nov; 144 ( Pt 11)():3111-3118. PubMed ID: 9846747 [TBL] [Abstract][Full Text] [Related]
40. Regulation of Bacillus subtilis sigmaH (spo0H) and AbrB in response to changes in external pH. Cosby WM; Zuber P J Bacteriol; 1997 Nov; 179(21):6778-87. PubMed ID: 9352930 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]