These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 7512209)

  • 1. Mutagenesis by 9-aminoacridine in Salmonella typhimurium: inhibition by glucose and other PTS class A carbon sources.
    Kopsidas G; MacPhee DG
    Mutat Res; 1994 Apr; 306(2):111-7. PubMed ID: 7512209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glucose inhibition of mutagenesis by 9-aminoacridine in Salmonella typhimurium.
    Kopsidas G; MacPhee DG
    Mutat Res; 1993 Jan; 285(1):101-8. PubMed ID: 7678123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Frameshift mutagenesis by 9-aminoacridine: antimutagenic effects of adenosine compounds.
    Kopsidas G; MacPhee DG
    Mutat Res; 1996 Jun; 352(1-2):135-42. PubMed ID: 8676902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutagenesis and anti-mutagenesis in Salmonella: influence of ethionine and caffeine on yields of mutations induced by 2-aminopurine and 9-aminoacridine.
    MacPhee DG; Nagel BA; Podger DM
    Mutat Res; 1983 Nov; 111(3):283-93. PubMed ID: 6358877
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancement of frameshift mutagenesis in Salmonella typhimurium derivatives of hisC3076 by 5-azacytidine and other agents.
    Podger DM; Grigg GW
    Mutagenesis; 1986 Jul; 1(4):283-6. PubMed ID: 2457781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A mutation in the DNA adenine methylase gene (dam) of Salmonella typhimurium decreases susceptibility to 9-aminoacridine-induced frameshift mutagenesis.
    Ritchie L; Podger DM; Hall RM
    Mutat Res; 1988 Sep; 194(2):131-41. PubMed ID: 2842672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RecA-independent mutagenesis in Escherichia coli may be subject to glucose repression.
    Thomas SM; MacPhee DG
    Mutat Res; 1987 Sep; 180(1):67-73. PubMed ID: 3041205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Induction of the SOS response by ICR191 does not influence frameshift mutagenesis at the hisC3076 marker of Salmonella typhimurium.
    Podger DM; Hall RM
    Mutat Res; 1985 Mar; 142(3):87-91. PubMed ID: 3883142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Frameshift mutagenesis by 9-aminoacridine and ICR191 in Escherichia coli: effects of uvrB, recA and lexA mutations and of plasmid pKM101.
    Thomas SM; MacPhee DG
    Mutat Res; 1985 Aug; 151(1):49-56. PubMed ID: 3894955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facilitated diffusion of fructose via the phosphoenolpyruvate/glucose phosphotransferase system of Escherichia coli.
    Kornberg HL; Lambourne LT; Sproul AA
    Proc Natl Acad Sci U S A; 2000 Feb; 97(4):1808-12. PubMed ID: 10677538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Indications that mutagenesis in Salmonella may be subject to catabolite repression.
    MacPhee DG
    Mutat Res; 1985 Aug; 151(1):35-41. PubMed ID: 3894953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutagenesis of anaerobic cultures of Salmonella typhimurium by nitrosoguanidine, diethyl sulfate and 9-aminoacridine.
    MacPhee DG; Jolly LD
    Mutat Res; 1985 Jul; 143(3):183-6. PubMed ID: 3892280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Limits to inducer exclusion: inhibition of the bacterial phosphotransferase system by glycerol kinase.
    Rohwer JM; Bader R; Westerhoff HV; Postma PW
    Mol Microbiol; 1998 Jul; 29(2):641-52. PubMed ID: 9720879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological consequences of the complete loss of phosphoryl-transfer proteins HPr and FPr of the phosphoenolpyruvate:sugar phosphotransferase system and analysis of fructose (fru) operon expression in Salmonella typhimurium.
    Feldheim DA; Chin AM; Nierva CT; Feucht BU; Cao YW; Xu YF; Sutrina SL; Saier MH
    J Bacteriol; 1990 Sep; 172(9):5459-69. PubMed ID: 2203752
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potassium chromate potentiates frameshift mutagenesis in E. coli and S. typhimurium.
    LaVelle JM
    Mutat Res; 1986 Jul; 171(1):1-10. PubMed ID: 3523229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Mannose Family Phosphotransferase System Permease and Associated Enzymes Are Required for Utilization of Fructoselysine and Glucoselysine in Salmonella enterica Serovar Typhimurium.
    Miller KA; Phillips RS; Kilgore PB; Smith GL; Hoover TR
    J Bacteriol; 2015 Sep; 197(17):2831-9. PubMed ID: 26100043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of the potency of promutagens and direct acting mutagens in bacteria by inhibitors of the multidrug resistance mechanism.
    De Flora S; Camoirano A; Cartiglia C; Ferguson L
    Mutagenesis; 1997 Nov; 12(6):431-5. PubMed ID: 9412996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3-Deoxy-3-fluoro-D-glucose-resistant Salmonella typhimurium mutants defective in the phosphoenolpyruvate:glycose phosphotransferase system.
    Melton T; Kundig W; Hartman PE; Meadow N
    J Bacteriol; 1976 Dec; 128(3):794-800. PubMed ID: 791932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of carbohydrate transport activities in Salmonella typhimurium: use of the phosphoglycerate transport system to energize solute uptake.
    Saier MH; Feucht BU
    J Bacteriol; 1980 Feb; 141(2):611-7. PubMed ID: 6988388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Azido analogs of acridine: photoaffinity probes for frameshift mutagenesis in Salmonella typhimurium.
    Firth WJ; Rock SG; Brown BR; Yielding LW
    Mutat Res; 1981 May; 81(3):295-309. PubMed ID: 7029257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.