BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 7512239)

  • 1. Changes in the serotonergic system during the sleep-wake cycle: simultaneous polygraphic and voltammetric recordings in hypothalamus using a telemetry system.
    Imeri L; De Simoni MG; Giglio R; Clavenna A; Mancia M
    Neuroscience; 1994 Jan; 58(2):353-8. PubMed ID: 7512239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hypothalamic serotonergic activity correlates better with brain temperature than with sleep-wake cycle and muscle tone in rats.
    Imeri L; Gemma C; De Simoni MG; Opp MR; Mancia M
    Neuroscience; 1999; 89(4):1241-6. PubMed ID: 10362311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Dynamics of the neuronal activity of the posterior hypothalamus during a phase shift of the wakefulness-sleep cycle].
    Oniani TN; Gvetadze LB; Mandzhavidze ShD
    Neirofiziologiia; 1988; 20(2):160-7. PubMed ID: 3398968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Behavioral state-related changes of extracellular serotonin concentration in the dorsal raphe nucleus: a microdialysis study in the freely moving cat.
    Portas CM; McCarley RW
    Brain Res; 1994 Jun; 648(2):306-12. PubMed ID: 7922546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extracellular levels of serotonin in the medial pontine reticular formation in relation to sleep-wake cycle in cats: a microdialysis study.
    Iwakiri H; Matsuyama K; Mori S
    Neurosci Res; 1993 Nov; 18(2):157-70. PubMed ID: 7510377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Specific neurons for wakefulness in the posterior hypothalamus in the cat].
    Vanni-Mercier G; Sakai K; Jouvet M
    C R Acad Sci III; 1984; 298(7):195-200. PubMed ID: 6424901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Voltammetric detection of extracellular 5-hydroxyindole compounds at the level of cell bodies and the terminals of the raphe system: variations during the wake-sleep cycle in the rat in chronic experiments].
    Cespuglio R; Faradji H; Jouvet M
    C R Seances Acad Sci III; 1983; 296(13):611-6. PubMed ID: 6193846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variations in extracellular levels of dopamine, noradrenaline, glutamate, and aspartate across the sleep--wake cycle in the medial prefrontal cortex and nucleus accumbens of freely moving rats.
    Léna I; Parrot S; Deschaux O; Muffat-Joly S; Sauvinet V; Renaud B; Suaud-Chagny MF; Gottesmann C
    J Neurosci Res; 2005 Sep; 81(6):891-9. PubMed ID: 16041801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brain extracellular glucose assessed by voltammetry throughout the rat sleep-wake cycle.
    Netchiporouk L; Shram N; Salvert D; Cespuglio R
    Eur J Neurosci; 2001 Apr; 13(7):1429-34. PubMed ID: 11298804
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MDMA treatment 6 months earlier attenuates the effects of CP-94,253, a 5-HT1B receptor agonist, on motor control but not sleep inhibition.
    Gyongyosi N; Balogh B; Kirilly E; Kitka T; Kantor S; Bagdy G
    Brain Res; 2008 Sep; 1231():34-46. PubMed ID: 18638459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Temperature changes in the neocortex, posterior hypothalamus and neck muscles in the wakefulness-sleep cycle of white rats].
    Piskareva TV
    Zh Evol Biokhim Fiziol; 1987; 23(5):680-3. PubMed ID: 3434041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Behavioral state-related changes of extracellular serotonin concentration in the pedunculopontine tegmental nucleus: a microdialysis study in freely moving animals.
    Strecker RE; Thakkar MM; Porkka-Heiskanen T; Dauphin LJ; Bjørkum AA; McCarley RW
    Sleep Res Online; 1999; 2(2):21-7. PubMed ID: 11421239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-frequency gamma electroencephalogram activity in association with sleep-wake states and spontaneous behaviors in the rat.
    Maloney KJ; Cape EG; Gotman J; Jones BE
    Neuroscience; 1997 Jan; 76(2):541-55. PubMed ID: 9015337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of a chronic tryptophan dietary deficiency on the rat's sleep-wake cycle.
    Clancy JJ; Caldwell DF; Oberleas D; Sangiah S; Villeneuve MJ
    Brain Res Bull; 1978; 3(1):83-7. PubMed ID: 204399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interleukin-1 induces changes in sleep, brain temperature, and serotonergic metabolism.
    Gemma C; Imeri L; de Simoni MG; Mancia M
    Am J Physiol; 1997 Feb; 272(2 Pt 2):R601-6. PubMed ID: 9124484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differentiation of presumed serotonergic dorsal raphe neurons in relation to behavior and wake-sleep states.
    Sakai K; Crochet S
    Neuroscience; 2001; 104(4):1141-55. PubMed ID: 11457597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extracellular serotonin levels in the medullary reticular formation during normal sleep and after REM sleep deprivation.
    Blanco-Centurion CA; Salin-Pascual RJ
    Brain Res; 2001 Dec; 923(1-2):128-36. PubMed ID: 11743980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Opposite variations of extracellular concentrations of 5-hydroxyindoleacetic acid (5-HIAA) measured by voltammetry of axonal terminals and cell bodies of the dorsal raphe nucleus through the sleep-wake cycle].
    Cespuglio R; Chastrette N; Jouvet M
    C R Acad Sci III; 1988; 307(18):817-23. PubMed ID: 2464425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prenatal protein malnourished rats show changes in sleep/wake behavior as adults.
    Datta S; Patterson EH; Vincitore M; Tonkiss J; Morgane PJ; Galler JR
    J Sleep Res; 2000 Mar; 9(1):71-9. PubMed ID: 10733692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prostaglandin E2 exerts an awaking effect in the posterior hypothalamus at a site distinct from that mediating its febrile action in the anterior hypothalamus.
    Onoe H; Watanabe Y; Ono K; Koyama Y; Hayaishi O
    J Neurosci; 1992 Jul; 12(7):2715-25. PubMed ID: 1613554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.