These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 7512911)

  • 1. Reptilian waking EEG: slow waves, spindles and evoked potentials.
    De Vera L; González J; Rial RV
    Electroencephalogr Clin Neurophysiol; 1994 Apr; 90(4):298-303. PubMed ID: 7512911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonlinear, fractal, and spectral analysis of the EEG of lizard, Gallotia galloti.
    González J; Gamundi A; Rial R; Nicolau MC; de Vera L; Pereda E
    Am J Physiol; 1999 Jul; 277(1):R86-93. PubMed ID: 10409261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuronal activities underlying the electroencephalogram and evoked potentials of sleeping and waking: implications for information processing.
    Coenen AM
    Neurosci Biobehav Rev; 1995; 19(3):447-63. PubMed ID: 7566746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationship between cortical electrical and cardiac autonomic activities in the awake lizard, Gallotia galloti.
    de Vera L; González J; Pereda E
    J Exp Zool; 2000 Jun; 287(1):21-8. PubMed ID: 10861546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Temperature effects on the EEG and evoked potentials in Reptilia (Lacerta galloti) (author's transl)].
    González J; Vera LM; García-Cruz CM; Rial RV
    Rev Esp Fisiol; 1978 Jun; 34(2):153-8. PubMed ID: 694203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sleep spindles and spike-wave discharges in EEG: Their generic features, similarities and distinctions disclosed with Fourier transform and continuous wavelet analysis.
    Sitnikova E; Hramov AE; Koronovsky AA; van Luijtelaar G
    J Neurosci Methods; 2009 Jun; 180(2):304-16. PubMed ID: 19383511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Electrophysiology of the telencephalic cortex in reptiles (lacerta galloti); EEG and evoked potentials (author's transl)].
    González J; Rial RV
    Rev Esp Fisiol; 1977 Sep; 33(3):239-48. PubMed ID: 897328
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Induction of long-term potentiation leads to increased reliability of evoked neocortical spindles in vivo.
    Werk CM; Harbour VL; Chapman CA
    Neuroscience; 2005; 131(4):793-800. PubMed ID: 15749334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EEG slow waves and sleep spindles: windows on the sleeping brain.
    Dijk DJ
    Behav Brain Res; 1995; 69(1-2):109-16. PubMed ID: 7546301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrocorticograms of hippocampal and dorsal cortex of two reptiles: comparison with possible mammalian homologs.
    Gaztelu JM; García-Austt E; Bullock TH
    Brain Behav Evol; 1991; 37(3):144-60. PubMed ID: 2070255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electroencephalogram bands modulated by vigilance states in an anuran species: a factor analytic approach.
    Fang G; Chen Q; Cui J; Tang Y
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2012 Feb; 198(2):119-27. PubMed ID: 22045113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cortical and subcortical EEG in relation to sleep-wake behavior in mammalian species.
    Lancel M
    Neuropsychobiology; 1993; 28(3):154-9. PubMed ID: 8278030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heartbeat-related EEG amplitude and phase modulations from wakefulness to deep sleep: Interactions with sleep spindles and slow oscillations.
    Lechinger J; Heib DP; Gruber W; Schabus M; Klimesch W
    Psychophysiology; 2015 Nov; 52(11):1441-50. PubMed ID: 26268858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The visual scoring of sleep and arousal in infants and children.
    Grigg-Damberger M; Gozal D; Marcus CL; Quan SF; Rosen CL; Chervin RD; Wise M; Picchietti DL; Sheldon SH; Iber C
    J Clin Sleep Med; 2007 Mar; 3(2):201-40. PubMed ID: 17557427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sleep patterns in the lizard Ctenosaura pectinata.
    Ayala-Guerrero F; Huitrón-Reséndiz S
    Physiol Behav; 1991 Jun; 49(6):1305-7. PubMed ID: 1896516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EEG dissociation induced by muscarinic receptor antagonists: Coherent 40 Hz oscillations in a background of slow waves and spindles.
    Castro-Zaballa S; Cavelli M; González J; Monti J; Falconi A; Torterolo P
    Behav Brain Res; 2019 Feb; 359():28-37. PubMed ID: 30321557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The GABAA receptor agonist THIP alters the EEG in waking and sleep of mice.
    Vyazovskiy VV; Kopp C; Bösch G; Tobler I
    Neuropharmacology; 2005 Apr; 48(5):617-26. PubMed ID: 15814097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sleep patterns in the bird Aratinga canicularis.
    Ayala-Guerrero F; Pérez MC; Calderón A
    Physiol Behav; 1988; 43(5):585-9. PubMed ID: 3200913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theta activity in the waking EEG is a marker of sleep propensity in the rat.
    Vyazovskiy VV; Tobler I
    Brain Res; 2005 Jul; 1050(1-2):64-71. PubMed ID: 15975563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of elevated ambient temperature on sleep, EEG spectra, and brain temperature in the rat.
    Gao BO; Franken P; Tobler I; Borbély AA
    Am J Physiol; 1995 Jun; 268(6 Pt 2):R1365-73. PubMed ID: 7611510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.