These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. T cells from normal and myasthenic individuals recognize the human acetylcholine receptor: heterogeneity of antigenic sites on the alpha-subunit. Melms A; Malcherek G; Gern U; Wiethölter H; Müller CA; Schoepfer R; Lindstrom J Ann Neurol; 1992 Mar; 31(3):311-8. PubMed ID: 1379027 [TBL] [Abstract][Full Text] [Related]
4. On the initial trigger of myasthenia gravis and suppression of the disease by antibodies against the MHC peptide region involved in the presentation of a pathogenic T-cell epitope. Atassi MZ; Oshima M; Deitiker P Crit Rev Immunol; 2001; 21(1-3):1-27. PubMed ID: 11642597 [TBL] [Abstract][Full Text] [Related]
5. The I-Abm12 mutation, which confers resistance to experimental myasthenia gravis, drastically affects the epitope repertoire of murine CD4+ cells sensitized to nicotinic acetylcholine receptor. Bellone M; Ostlie N; Lei SJ; Wu XD; Conti-Tronconi BM J Immunol; 1991 Sep; 147(5):1484-91. PubMed ID: 1715360 [TBL] [Abstract][Full Text] [Related]
6. A 17-Mer self-peptide of acetylcholine receptor binds to B cell MHC class II, activates helper T cells, and stimulates autoantibody production and electrophysiologic signs of myasthenia gravis. Yoshikawa H; Lambert EH; Walser-Kuntz DR; Yasukawa Y; McCormick DJ; Lennon VA J Immunol; 1997 Aug; 159(3):1570-7. PubMed ID: 9233656 [TBL] [Abstract][Full Text] [Related]
7. A pathogenetic role for the thymoma in myasthenia gravis. Autosensitization of IL-4- producing T cell clones recognizing extracellular acetylcholine receptor epitopes presented by minority class II isotypes. Nagvekar N; Moody AM; Moss P; Roxanis I; Curnow J; Beeson D; Pantic N; Newsom-Davis J; Vincent A; Willcox N J Clin Invest; 1998 May; 101(10):2268-77. PubMed ID: 9593783 [TBL] [Abstract][Full Text] [Related]
8. Peptide-selected T cell lines from myasthenia gravis patients and controls recognize epitopes that are not processed from whole acetylcholine receptor. Matsuo H; Batocchi AP; Hawke S; Nicolle M; Jacobson L; Vincent A; Newsom-Davis J; Willcox N J Immunol; 1995 Oct; 155(7):3683-92. PubMed ID: 7561069 [TBL] [Abstract][Full Text] [Related]
9. MHC class II presentation of human acetylcholine receptor in Myasthenia gravis: binding of synthetic gamma subunit sequences to DR molecules. Yuen MH; Macklin KD; Conti-Fine BM J Autoimmun; 1996 Feb; 9(1):67-77. PubMed ID: 8845056 [TBL] [Abstract][Full Text] [Related]
11. Animal models of myasthenia gravis. Christadoss P; Poussin M; Deng C Clin Immunol; 2000 Feb; 94(2):75-87. PubMed ID: 10637092 [TBL] [Abstract][Full Text] [Related]
12. Inhibition of experimental autoimmune myasthenia gravis by major histocompatibility complex class II competitor peptides results not only in a suppressed but also in an altered immune response. Wauben MH; Hoedemaekers AC; Graus YM; Wagenaar JP; van Eden W; de Baets MH Eur J Immunol; 1996 Dec; 26(12):2866-75. PubMed ID: 8977279 [TBL] [Abstract][Full Text] [Related]
13. Production of anti-acetylcholine receptor-alpha antibody in vitro by peripheral blood lymphocytes of patients with myasthenia gravis: role of immunoregulatory T cells and monocytes. Ofosu-Appiah W; Mokhtarian F; Shirazian D; Grob D J Lab Clin Med; 1994 Aug; 124(2):231-41. PubMed ID: 8051487 [TBL] [Abstract][Full Text] [Related]
14. Soluble MHC II-peptide complexes induce antigen-specific apoptosis in T cells. Nag B; Kendrick T; Arimilli S; Yu SC; Sriram S Cell Immunol; 1996 May; 170(1):25-33. PubMed ID: 8660796 [TBL] [Abstract][Full Text] [Related]
15. Tolerance to a dominant T cell epitope in the acetylcholine receptor molecule induces epitope spread and suppresses murine myasthenia gravis. Wu B; Deng C; Goluszko E; Christadoss P J Immunol; 1997 Sep; 159(6):3016-23. PubMed ID: 9300727 [TBL] [Abstract][Full Text] [Related]
16. TCR V beta usage by acetylcholine receptor-specific CD4+ T cells in myasthenia gravis. Raju R; Navaneetham D; Protti MP; Horton RM; Hoppe BL; Howard J; Conti-Fine BM J Autoimmun; 1997 Apr; 10(2):203-17. PubMed ID: 9185882 [TBL] [Abstract][Full Text] [Related]
17. Myasthenia gravis. Residues of the alpha and gamma subunits of muscle acetylcholine receptor involved in formation of immunodominant CD4+ epitopes. Moiola L; Protti MP; McCormick D; Howard JF; Conti-Tronconi BM J Immunol; 1994 May; 152(9):4686-98. PubMed ID: 7908921 [TBL] [Abstract][Full Text] [Related]
18. In vitro proliferative responses and antibody titers specific to human acetylcholine receptor synthetic peptides in patients with myasthenia gravis and relation to HLA class II genes. Brocke S; Brautbar C; Steinman L; Abramsky O; Rothbard J; Neumann D; Fuchs S; Mozes E J Clin Invest; 1988 Dec; 82(6):1894-900. PubMed ID: 2461962 [TBL] [Abstract][Full Text] [Related]
19. Efficient presentation of known HLA class II-restricted MAGE-A3 epitopes by dendritic cells electroporated with messenger RNA encoding an invariant chain with genetic exchange of class II-associated invariant chain peptide. Bonehill A; Heirman C; Tuyaerts S; Michiels A; Zhang Y; van der Bruggen P; Thielemans K Cancer Res; 2003 Sep; 63(17):5587-94. PubMed ID: 14500399 [TBL] [Abstract][Full Text] [Related]
20. Autoimmune responses against acetylcholine receptor: T and B cell collaboration and manipulation by synthetic peptides. Atassi MZ; Oshima M Crit Rev Immunol; 1997; 17(5-6):481-95. PubMed ID: 9419435 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]