These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 7513048)
1. In vitro study of processing of the intron-encoded U16 small nucleolar RNA in Xenopus laevis. Caffarelli E; Arese M; Santoro B; Fragapane P; Bozzoni I Mol Cell Biol; 1994 May; 14(5):2966-74. PubMed ID: 7513048 [TBL] [Abstract][Full Text] [Related]
2. Processing of the intron-encoded U16 and U18 snoRNAs: the conserved C and D boxes control both the processing reaction and the stability of the mature snoRNA. Caffarelli E; Fatica A; Prislei S; De Gregorio E; Fragapane P; Bozzoni I EMBO J; 1996 Mar; 15(5):1121-31. PubMed ID: 8605882 [TBL] [Abstract][Full Text] [Related]
3. Biosynthesis of U16 snoRNA in early development of X. laevis. Fatica A; Caffarelli E; Beccari E; Bozzoni I Biochem Biophys Res Commun; 1997 Dec; 241(2):486-90. PubMed ID: 9425297 [TBL] [Abstract][Full Text] [Related]
4. A novel small nucleolar RNA (U16) is encoded inside a ribosomal protein intron and originates by processing of the pre-mRNA. Fragapane P; Prislei S; Michienzi A; Caffarelli E; Bozzoni I EMBO J; 1993 Jul; 12(7):2921-8. PubMed ID: 8335006 [TBL] [Abstract][Full Text] [Related]
5. Two different snoRNAs are encoded in introns of amphibian and human L1 ribosomal protein genes. Prislei S; Michienzi A; Presutti C; Fragapane P; Bozzoni I Nucleic Acids Res; 1993 Dec; 21(25):5824-30. PubMed ID: 7507233 [TBL] [Abstract][Full Text] [Related]
6. A novel Mn++-dependent ribonuclease that functions in U16 SnoRNA processing in X. laevis. Caffarelli E; Maggi L; Fatica A; Jiricny J; Bozzoni I Biochem Biophys Res Commun; 1997 Apr; 233(2):514-7. PubMed ID: 9144568 [TBL] [Abstract][Full Text] [Related]
7. Intronic U14 snoRNAs of Xenopus laevis are located in two different parent genes and can be processed from their introns during early oogenesis. Xia L; Liu J; Sage C; Trexler EB; Andrews MT; Maxwell ES Nucleic Acids Res; 1995 Dec; 23(23):4844-9. PubMed ID: 8532527 [TBL] [Abstract][Full Text] [Related]
8. U14 snoRNAs are encoded in introns of human ribosomal protein S13 gene. Kenmochi N; Higa S; Yoshihama M; Tanaka T Biochem Biophys Res Commun; 1996 Nov; 228(2):371-4. PubMed ID: 8920921 [TBL] [Abstract][Full Text] [Related]
9. Different forms of U15 snoRNA are encoded in the introns of the ribosomal protein S1 gene of Xenopus laevis. Pellizzoni L; Crosio C; Campioni N; Loreni F; Pierandrei-Amaldi P Nucleic Acids Res; 1994 Nov; 22(22):4607-13. PubMed ID: 7984408 [TBL] [Abstract][Full Text] [Related]
10. The Xenopus intron-encoded U17 snoRNA is produced by exonucleolytic processing of its precursor in oocytes. Cecconi F; Mariottini P; Amaldi F Nucleic Acids Res; 1995 Nov; 23(22):4670-6. PubMed ID: 8524659 [TBL] [Abstract][Full Text] [Related]
11. Purification, cloning, and characterization of XendoU, a novel endoribonuclease involved in processing of intron-encoded small nucleolar RNAs in Xenopus laevis. Laneve P; Altieri F; Fiori ME; Scaloni A; Bozzoni I; Caffarelli E J Biol Chem; 2003 Apr; 278(15):13026-32. PubMed ID: 12571235 [TBL] [Abstract][Full Text] [Related]
12. Exonucleolytic processing of small nucleolar RNAs from pre-mRNA introns. Kiss T; Filipowicz W Genes Dev; 1995 Jun; 9(11):1411-24. PubMed ID: 7797080 [TBL] [Abstract][Full Text] [Related]
13. The U18 snRNA is not essential for pre-rRNA processing in Xenopus laevis. Dunbar DA; Ware VC; Baserga SJ RNA; 1996 Apr; 2(4):324-33. PubMed ID: 8634913 [TBL] [Abstract][Full Text] [Related]
14. TOP promoter elements control the relative ratio of intron-encoded snoRNA versus spliced mRNA biosynthesis. de Turris V; Di Leva G; Caldarola S; Loreni F; Amaldi F; Bozzoni I J Mol Biol; 2004 Nov; 344(2):383-94. PubMed ID: 15522292 [TBL] [Abstract][Full Text] [Related]
15. Processing of the intron-encoded U18 small nucleolar RNA in the yeast Saccharomyces cerevisiae relies on both exo- and endonucleolytic activities. Villa T; Ceradini F; Presutti C; Bozzoni I Mol Cell Biol; 1998 Jun; 18(6):3376-83. PubMed ID: 9584178 [TBL] [Abstract][Full Text] [Related]
16. Clusters of multiple different small nucleolar RNA genes in plants are expressed as and processed from polycistronic pre-snoRNAs. Leader DJ; Clark GP; Watters J; Beven AF; Shaw PJ; Brown JW EMBO J; 1997 Sep; 16(18):5742-51. PubMed ID: 9312032 [TBL] [Abstract][Full Text] [Related]
17. Intracellular localization and unique conserved sequences of three small nucleolar RNAs. Selvamurugan N; Joost OH; Haas ES; Brown JW; Galvin NJ; Eliceiri GL Nucleic Acids Res; 1997 Apr; 25(8):1591-6. PubMed ID: 9092667 [TBL] [Abstract][Full Text] [Related]
18. RNA-protein interactions in the nuclei of Xenopus oocytes: complex formation and processing activity on the regulatory intron of ribosomal protein gene L1. Santoro B; De Gregorio E; Caffarelli E; Bozzoni I Mol Cell Biol; 1994 Oct; 14(10):6975-82. PubMed ID: 7935414 [TBL] [Abstract][Full Text] [Related]
19. snoRNA nuclear import and potential for cotranscriptional function in pre-rRNA processing. Peculis BA RNA; 2001 Feb; 7(2):207-19. PubMed ID: 11233978 [TBL] [Abstract][Full Text] [Related]
20. U17XS8, a small nucleolar RNA with a 12 nt complementarity to 18S rRNA and coded by a sequence repeated in the six introns of Xenopus laevis ribosomal protein S8 gene. Cecconi F; Mariottini P; Loreni F; Pierandrei-Amaldi P; Campioni N; Amaldi F Nucleic Acids Res; 1994 Mar; 22(5):732-41. PubMed ID: 8139912 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]