These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 7513554)

  • 1. Motionally restricted tryptophan environments at the peptide-lipid interface of gramicidin channels.
    Mukherjee S; Chattopadhyay A
    Biochemistry; 1994 May; 33(17):5089-97. PubMed ID: 7513554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Importance of indole N-H hydrogen bonding in the organization and dynamics of gramicidin channels.
    Chaudhuri A; Haldar S; Sun H; Koeppe RE; Chattopadhyay A
    Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):419-28. PubMed ID: 24148157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monitoring gramicidin conformations in membranes: a fluorescence approach.
    Rawat SS; Kelkar DA; Chattopadhyay A
    Biophys J; 2004 Aug; 87(2):831-43. PubMed ID: 15298892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of structural transition of the host assembly on dynamics of an ion channel peptide: a fluorescence approach.
    Rawat SS; Kelkar DA; Chattopadhyay A
    Biophys J; 2005 Nov; 89(5):3049-58. PubMed ID: 16100280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of graded hydration on the dynamics of an ion channel peptide: a fluorescence approach.
    Kelkar DA; Chattopadhyay A
    Biophys J; 2005 Feb; 88(2):1070-80. PubMed ID: 15542551
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of gramicidin channel conformation and organization by hydrophobic mismatch in saturated phosphatidylcholine bilayers.
    Kelkar DA; Chattopadhyay A
    Biochim Biophys Acta; 2007 May; 1768(5):1103-13. PubMed ID: 17321493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potassium flux through gramicidin ion channels is augmented in vesicles comprised of plasmenylcholine: correlations between gramicidin conformation and function in chemically distinct host bilayer matrices.
    Chen X; Gross RW
    Biochemistry; 1995 Jun; 34(22):7356-64. PubMed ID: 7540040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tryptophan interactions of gramicidin A' channels in lipids: a time-resolved fluorescence study.
    Masotti L; Cavatorta P; Sartor G; Casali E; Szabo AG
    Biochim Biophys Acta; 1986 Nov; 862(2):265-72. PubMed ID: 2430620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of viscosity on gramicidin tryptophan rotational motion.
    Scarlata SF
    Biophys J; 1988 Dec; 54(6):1149-57. PubMed ID: 2466493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorophore environments in membrane-bound probes: a red edge excitation shift study.
    Chattopadhyay A; Mukherjee S
    Biochemistry; 1993 Apr; 32(14):3804-11. PubMed ID: 8466919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Membrane organization and dynamics of "inner pair" and "outer pair" tryptophan residues in gramicidin channels.
    Haldar S; Chaudhuri A; Gu H; Koeppe RE; Kombrabail M; Krishnamoorthy G; Chattopadhyay A
    J Phys Chem B; 2012 Sep; 116(36):11056-64. PubMed ID: 22892073
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Restricted mobility of the sole tryptophan in membrane-bound melittin.
    Chattopadhyay A; Rukmini R
    FEBS Lett; 1993 Dec; 335(3):341-4. PubMed ID: 8262180
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monitoring ion channel conformations in membranes utilizing a novel dual fluorescence quenching approach.
    Kelkar DA; Chattopadhyay A
    Biochem Biophys Res Commun; 2006 May; 343(2):483-8. PubMed ID: 16546136
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tryptophans in membrane proteins: indole ring orientations and functional implications in the gramicidin channel.
    Hu W; Lee KC; Cross TA
    Biochemistry; 1993 Jul; 32(27):7035-47. PubMed ID: 7687467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Raman linear intensity difference of membrane-bound peptides: indole ring orientations of tryptophans 11 and 13 in the gramicidin A transmembrane channel.
    Maruyama T; Takeuchi H
    Biospectroscopy; 1998; 4(3):171-84. PubMed ID: 9639108
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of gramicidin channel structure and function by the aliphatic "spacer" residues 10, 12, and 14 between the tryptophans.
    Jude AR; Greathouse DV; Koeppe RE; Providence LL; Andersen OS
    Biochemistry; 1999 Jan; 38(3):1030-9. PubMed ID: 9893999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wavelength-Selective Fluorescence of a Model Transmembrane Peptide: Constrained Dynamics of Interfacial Tryptophan Anchors.
    Pal S; Koeppe RE; Chattopadhyay A
    J Fluoresc; 2018 Nov; 28(6):1317-1323. PubMed ID: 30225736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of tryptophan residues in gramicidin channel organization and function.
    Chattopadhyay A; Rawat SS; Greathouse DV; Kelkar DA; Koeppe RE
    Biophys J; 2008 Jul; 95(1):166-75. PubMed ID: 18339735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tryptophan dynamics and structural refinement in a lipid bilayer environment: solid state NMR of the gramicidin channel.
    Hu W; Lazo ND; Cross TA
    Biochemistry; 1995 Oct; 34(43):14138-46. PubMed ID: 7578011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gramicidin conformational studies with mixed-chain unsaturated phospholipid bilayer systems.
    Cox KJ; Ho C; Lombardi JV; Stubbs CD
    Biochemistry; 1992 Feb; 31(4):1112-7. PubMed ID: 1370909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.