BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 7513691)

  • 1. Glutamate receptors induce a burst of superoxide via activation of nitric oxide synthase in arginine-depleted neurons.
    Culcasi M; Lafon-Cazal M; Pietri S; Bockaert J
    J Biol Chem; 1994 Apr; 269(17):12589-93. PubMed ID: 7513691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitric oxide, superoxide and peroxynitrite: putative mediators of NMDA-induced cell death in cerebellar granule cells.
    Lafon-Cazal M; Culcasi M; Gaven F; Pietri S; Bockaert J
    Neuropharmacology; 1993 Nov; 32(11):1259-66. PubMed ID: 7509050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glutamate receptor agonists stimulate nitric oxide synthase in primary cultures of cerebellar granule cells.
    Kiedrowski L; Costa E; Wroblewski JT
    J Neurochem; 1992 Jan; 58(1):335-41. PubMed ID: 1370078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glutamate receptor-induced cyclic GMP formation in primary cultures of mesencephalic neurons.
    Ambrosini A; Racagni G
    Biochem Biophys Res Commun; 1993 Jun; 193(3):1098-103. PubMed ID: 7686744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NMDA-dependent superoxide production and neurotoxicity.
    Lafon-Cazal M; Pietri S; Culcasi M; Bockaert J
    Nature; 1993 Aug; 364(6437):535-7. PubMed ID: 7687749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation of superoxide by purified brain nitric oxide synthase.
    Pou S; Pou WS; Bredt DS; Snyder SH; Rosen GM
    J Biol Chem; 1992 Dec; 267(34):24173-6. PubMed ID: 1280257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitric oxide synthase generates superoxide and nitric oxide in arginine-depleted cells leading to peroxynitrite-mediated cellular injury.
    Xia Y; Dawson VL; Dawson TM; Snyder SH; Zweier JL
    Proc Natl Acad Sci U S A; 1996 Jun; 93(13):6770-4. PubMed ID: 8692893
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of nitric oxide-mediated neurotoxicity in primary brain cultures.
    Dawson VL; Dawson TM; Bartley DA; Uhl GR; Snyder SH
    J Neurosci; 1993 Jun; 13(6):2651-61. PubMed ID: 7684776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monitoring of cyclic GMP during cerebellar microdialysis in freely-moving rats as an index of nitric oxide synthase activity.
    Vallebuona F; Raiteri M
    Neuroscience; 1993 Dec; 57(3):577-85. PubMed ID: 7508575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitric oxide regulates AKT phosphorylation and nuclear translocation in cultured retinal cells.
    Mejía-García TA; Portugal CC; Encarnação TG; Prado MA; Paes-de-Carvalho R
    Cell Signal; 2013 Dec; 25(12):2424-39. PubMed ID: 23958999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein kinase C modulates calcium sensitivity of nitric oxide synthase in cerebellar slices.
    Okada D
    J Neurochem; 1995 Mar; 64(3):1298-304. PubMed ID: 7532210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Involvement of the perferryl complex of nitric oxide synthase in the catalysis of secondary free radical formation.
    Porasuphatana S; Tsai P; Pou S; Rosen GM
    Biochim Biophys Acta; 2001 Apr; 1526(1):95-104. PubMed ID: 11287127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro interaction between cerebellar astrocytes and granule cells: a putative role for nitric oxide.
    Kiedrowski L; Costa E; Wroblewski JT
    Neurosci Lett; 1992 Jan; 135(1):59-61. PubMed ID: 1371859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of free radicals in NMDA-dependent neurotoxicity.
    Fagni L; Lafon-Cazal M; Rondouin G; Manzoni O; Lerner-Natoli M; Bockaert J
    Prog Brain Res; 1994; 103():381-90. PubMed ID: 7533915
    [No Abstract]   [Full Text] [Related]  

  • 15. Nitric oxide in retina: relation to excitatory amino acids and excitotoxicity.
    Zeevalk GD; Nicklas WJ
    Exp Eye Res; 1994 Mar; 58(3):343-50. PubMed ID: 7513649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitric oxide inhibition of ERK1/2 activity in cells expressing neuronal nitric-oxide synthase.
    Raines KW; Cao GL; Porsuphatana S; Tsai P; Rosen GM; Shapiro P
    J Biol Chem; 2004 Feb; 279(6):3933-40. PubMed ID: 14602725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antagonism by NG-nitro-L-arginine of L-glutamate-induced neurotoxicity in cultured neonatal rat cortical neurons. Prolonged application enhances neuroprotective efficacy.
    Vigé X; Carreau A; Scatton B; Nowicki JP
    Neuroscience; 1993 Aug; 55(4):893-901. PubMed ID: 7694182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures.
    Dawson VL; Dawson TM; London ED; Bredt DS; Snyder SH
    Proc Natl Acad Sci U S A; 1991 Jul; 88(14):6368-71. PubMed ID: 1648740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitric oxide synthase: involvement of oxygen radicals in conversion of L-arginine to nitric oxide.
    Mittal CK
    Biochem Biophys Res Commun; 1993 May; 193(1):126-32. PubMed ID: 7684903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-classical glutamate receptors, blocked by both NMDA and non-NMDA antagonists, stimulate nitric oxide production in neurons.
    Marin P; Quignard JF; Lafon-Cazal M; Bockaert J
    Neuropharmacology; 1993 Jan; 32(1):29-36. PubMed ID: 8094233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.