These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

384 related articles for article (PubMed ID: 7513751)

  • 1. Whole-cell analysis of ionic currents underlying the firing pattern of neurons in the gustatory zone of the nucleus tractus solitarii.
    Tell F; Bradley RM
    J Neurophysiol; 1994 Feb; 71(2):479-92. PubMed ID: 7513751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ionic basis for endogenous rhythmic patterns induced by activation of N-methyl-D-aspartate receptors in neurons of the rat nucleus tractus solitarii.
    Tell F; Jean A
    J Neurophysiol; 1993 Dec; 70(6):2379-90. PubMed ID: 7509858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Separation of neuron types in the gustatory zone of the nucleus tractus solitarii on the basis of intrinsic firing properties.
    Bradley RM; Sweazey RD
    J Neurophysiol; 1992 Jun; 67(6):1659-68. PubMed ID: 1629769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro characterization of neurons in the ventral part of the nucleus tractus solitarius. II. Ionic basis for repetitive firing patterns.
    Dekin MS; Getting PA
    J Neurophysiol; 1987 Jul; 58(1):215-29. PubMed ID: 2441002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inward rectification and its effects on the repetitive firing properties of bulbospinal neurons located in the ventral part of the nucleus tractus solitarius.
    Dekin MS
    J Neurophysiol; 1993 Aug; 70(2):590-601. PubMed ID: 8410159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An ionic current model for neurons in the rat medial nucleus tractus solitarii receiving sensory afferent input.
    Schild JH; Khushalani S; Clark JW; Andresen MC; Kunze DL; Yang M
    J Physiol; 1993 Sep; 469():341-63. PubMed ID: 7505824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium conductances and their role in the firing behavior of neonatal rat hypoglossal motoneurons.
    Viana F; Bayliss DA; Berger AJ
    J Neurophysiol; 1993 Jun; 69(6):2137-49. PubMed ID: 8394413
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characteristics of action potentials and their underlying outward currents in rat taste receptor cells.
    Chen Y; Sun XD; Herness S
    J Neurophysiol; 1996 Feb; 75(2):820-31. PubMed ID: 8714655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characteristic firing behavior of cell types in the cardiorespiratory region of the nucleus tractus solitarii of the rat.
    Paton JF; Foster WR; Schwaber JS
    Brain Res; 1993 Feb; 604(1-2):112-25. PubMed ID: 8457840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Layer I neurons of rat neocortex. I. Action potential and repetitive firing properties.
    Zhou FM; Hablitz JJ
    J Neurophysiol; 1996 Aug; 76(2):651-67. PubMed ID: 8871189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potassium currents and membrane excitability of neurons in the rat's dorsal nucleus of the lateral lemniscus.
    Fu XW; Wu SH; Brezden BL; Kelly JB
    J Neurophysiol; 1996 Aug; 76(2):1121-32. PubMed ID: 8871225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contribution of a slowly inactivating potassium current to the transition to firing of neostriatal spiny projection neurons.
    Nisenbaum ES; Xu ZC; Wilson CJ
    J Neurophysiol; 1994 Mar; 71(3):1174-89. PubMed ID: 8201411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Delayed depolarization and slow sodium currents in cutaneous afferents.
    Honmou O; Utzschneider DA; Rizzo MA; Bowe CM; Waxman SG; Kocsis JD
    J Neurophysiol; 1994 May; 71(5):1627-37. PubMed ID: 8064338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution of the low-threshold T-type calcium current in generating the post-spike depolarizing afterpotential in dentate granule neurons of immature rats.
    Zhang L; Valiante TA; Carlen PL
    J Neurophysiol; 1993 Jul; 70(1):223-31. PubMed ID: 8395576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationship between structure and function of neurons in the rat rostral nucleus tractus solitarii.
    King MS; Bradley RM
    J Comp Neurol; 1994 Jun; 344(1):50-64. PubMed ID: 8063955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple potassium conductances and their role in action potential repolarization and repetitive firing behavior of neonatal rat hypoglossal motoneurons.
    Viana F; Bayliss DA; Berger AJ
    J Neurophysiol; 1993 Jun; 69(6):2150-63. PubMed ID: 8350136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cholecystokinin-gated currents in neurons of the rat solitary complex in vitro.
    Branchereau P; Champagnat J; Denavit-Saubié M
    J Neurophysiol; 1993 Dec; 70(6):2584-95. PubMed ID: 7509860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hyperpolarization-activated cation current (Ih) in neurons of the medial nucleus of the trapezoid body: voltage-clamp analysis and enhancement by norepinephrine and cAMP suggest a modulatory mechanism in the auditory brain stem.
    Banks MI; Pearce RA; Smith PH
    J Neurophysiol; 1993 Oct; 70(4):1420-32. PubMed ID: 7506755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of outward currents in neurons of the avian nucleus magnocellularis.
    Rathouz M; Trussell L
    J Neurophysiol; 1998 Dec; 80(6):2824-35. PubMed ID: 9862887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ionic basis of the differential neuronal activity of guinea-pig septal nucleus studied in vitro.
    Alvarez de Toledo G; López-Barneo J
    J Physiol; 1988 Feb; 396():399-415. PubMed ID: 2457690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.