These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 7514088)

  • 1. Circadian rhythm of glycogen in the hamster diaphragm.
    Reid WD; Cairns CL; Chung F; Wiggs BR; Belcastro AN
    Can J Physiol Pharmacol; 1993 Dec; 71(12):868-73. PubMed ID: 7514088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regional and fibre type glycogen utilization patterns in the hamster diaphragm following swimming.
    Reid WD; Cairns CL; McRae DJ; Chung F; Wiggs BR; Pardy RL
    Respir Med; 1994 Jul; 88(6):421-7. PubMed ID: 7938792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fiber type and regional differences in oxidative capacity and glycogen content in the hamster diaphragm.
    Reid WD; Wiggs BR; Paré PD; Pardy RL
    Am Rev Respir Dis; 1992 Nov; 146(5 Pt 1):1266-71. PubMed ID: 1443883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regional and fiber-type percentages and sizes in the hamster diaphragm after swim training.
    Reid WD; Shanks J; Samrai B
    Phys Ther; 1997 Feb; 77(2):178-86. PubMed ID: 9037218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proportions and sizes of muscle fiber types in the hamster diaphragm.
    Reid WD; Hards JM; Wiggs BR; Wood EN; Wright PV; Pardy RL
    Muscle Nerve; 1989 Feb; 12(2):108-18. PubMed ID: 2710143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relative degree of stimulation-evoked glycogen degradation in muscle fibres of different type in rat gastrocnemius.
    Kernell D; Lind A; van Diemen AB; De Haan A
    J Physiol; 1995 Apr; 484 ( Pt 1)(Pt 1):139-53. PubMed ID: 7541460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of glycogen stores in epithelial cells during airway development in Syrian golden hamsters: a histochemical study comparing concanavalin A binding with the periodic acid-Schiff reaction.
    Ito T; Newkirk C; Strum JM; McDowell EM
    J Histochem Cytochem; 1990 May; 38(5):691-7. PubMed ID: 2332626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The histochemistry of the posterior cricoarytenoid (PCA) muscle in the dog, compared with the diaphragm, the sternothyroid and the sternomastoid muscle.
    Brøndbo K; Dahl HA; Teig E
    Acta Otolaryngol; 1985; 100(3-4):289-98. PubMed ID: 2414969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Respiratory muscle response to load and glycogen content in type I and II fibers.
    Bazzy AR; Akabas SR; Hays AP; Haddad GG
    Exp Neurol; 1988 Jul; 101(1):17-28. PubMed ID: 3391257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cytophotometry of post mortem glycogenolysis in different histochemical types of muscle fibres of the pig.
    Swatland HJ
    Histochem J; 1977 Mar; 9(2):163-70. PubMed ID: 190193
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distribution of fibre sizes in human skeletal muscle. An enzyme histochemical study in m tibialis anterior.
    Henriksson-Larsén K; Fridén J; Wretling ML
    Acta Physiol Scand; 1985 Feb; 123(2):171-7. PubMed ID: 3157295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic characteristics of fibre types in human skeletal muscle.
    Essén B; Jansson E; Henriksson J; Taylor AW; Saltin B
    Acta Physiol Scand; 1975 Oct; 95(2):153-65. PubMed ID: 242187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New insights into skeletal muscle fibre types in the dog with particular focus towards hybrid myosin phenotypes.
    Acevedo LM; Rivero JL
    Cell Tissue Res; 2006 Feb; 323(2):283-303. PubMed ID: 16163488
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytophotometry of post mortem glycogenolysis in quiescent bovine muscle fibres in relation to temperature, succinate dehydrogenase activity and adenosine triphosphatase activity.
    Swatland HJ
    Histochem J; 1980 Jan; 12(1):39-47. PubMed ID: 6445345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of dilated cardiomyopathy on the diaphragm in the Syrian hamster.
    Stassijns G; Gayan-Ramirez G; De Leyn P; de Bock V; Dom R; Lysens R; Decramer M
    Eur Respir J; 1999 Feb; 13(2):391-7. PubMed ID: 10065687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Muscle fibre types in costal and crural diaphragm in normal men and in patients with moderate chronic respiratory disease.
    Sánchez J; Medrano G; Debesse B; Riquet M; Derenne JP
    Bull Eur Physiopathol Respir; 1985; 21(4):351-6. PubMed ID: 4041660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Capillaries measured in canine diaphragm by two methods.
    Reid MB; Parsons DB; Giddings CJ; Gonyea WJ; Johnson RL
    Anat Rec; 1992 Sep; 234(1):49-54. PubMed ID: 1416096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Muscle fibre differentiation and vascularisation in the juvenile European eel (Anguilla anguilla L.).
    Egginton S; Johnston IA
    Cell Tissue Res; 1982; 222(3):563-77. PubMed ID: 6277491
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glycogen content in neonatal diaphragmatic fibers in response to inspiratory flow resistive loads.
    Kim YJ; Bazzy AR
    Pediatr Res; 1992 Apr; 31(4 Pt 1):354-8. PubMed ID: 1570202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maximum velocity of shortening related to myosin isoform composition in frog skeletal muscle fibres.
    Edman KA; Reggiani C; Schiaffino S; te Kronnie G
    J Physiol; 1988 Jan; 395():679-94. PubMed ID: 2970539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.