These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 7514785)

  • 21. Enhanced recognition of non-complementary hybridization by single-LNA-modified oligonucleotide probes.
    Piao X; Yan Y; Yan J; Guan Y
    Anal Bioanal Chem; 2009 Jul; 394(6):1637-43. PubMed ID: 19513703
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Implication of RNA structure on antisense oligonucleotide hybridization kinetics.
    Lima WF; Monia BP; Ecker DJ; Freier SM
    Biochemistry; 1992 Dec; 31(48):12055-61. PubMed ID: 1280997
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Studies of oligonucleotide interactions by hybridisation to arrays: the influence of dangling ends on duplex yield.
    Williams JC; Case-Green SC; Mir KU; Southern EM
    Nucleic Acids Res; 1994 Apr; 22(8):1365-7. PubMed ID: 8190626
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Studies on the base pairing properties of deoxyinosine by solid phase hybridisation to oligonucleotides.
    Case-Green SC; Southern EM
    Nucleic Acids Res; 1994 Jan; 22(2):131-6. PubMed ID: 8121796
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synthesis and evaluation of phosphorescent oligonucleotide probes for hybridisation assays.
    O'Sullivan PJ; Burke M; Soini AE; Papkovsky DB
    Nucleic Acids Res; 2002 Nov; 30(21):e114. PubMed ID: 12409473
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Low density DNA microarray for detection of most frequent TP53 missense point mutations.
    Rangel-López A; Maldonado-Rodríguez R; Salcedo-Vargas M; Espinosa-Lara JM; Méndez-Tenorio A; Beattie KL
    BMC Biotechnol; 2005 Feb; 5():8. PubMed ID: 15713227
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantitative detection of siRNA and single-stranded oligonucleotides: relationship between uptake and biological activity of siRNA.
    Overhoff M; Wünsche W; Sczakiel G
    Nucleic Acids Res; 2004 Dec; 32(21):e170. PubMed ID: 15576677
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Large-scale synthesis of triple helix forming oligonucleotides using a controlled-pore glass support.
    Murphy M; Rieger M; Jayaraman K
    Biotechniques; 1993 Dec; 15(6):1004-6, 1008, 1010. PubMed ID: 8292331
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hybridisation of [76Br]-labelled antisense oligonucleotides to Chromogranin A mRNA verified by RT-PCR.
    Wu F; Lendvai G; Yngve U; Eriksson B; Långström B; Bergström M
    Nucl Med Biol; 2004 Nov; 31(8):1073-8. PubMed ID: 15607489
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The addition of low numbers of 3' thymine bases can be used to improve the hybridization signal of oligonucleotides for use within arrays on nylon supports.
    Brown TJ; Anthony RM
    J Microbiol Methods; 2000 Oct; 42(2):203-7. PubMed ID: 11018277
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structured oligonucleotides for target indexing to allow single-vessel PCR amplification and solid support microarray hybridization.
    Girard LD; Boissinot K; Peytavi R; Boissinot M; Bergeron MG
    Analyst; 2015 Feb; 140(3):912-21. PubMed ID: 25489607
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mutation detection by stacking hybridization on genosensor arrays.
    Maldonado-Rodriguez R; Espinosa-Lara M; Loyola-Abitia P; Beattie WG; Beattie KL
    Mol Biotechnol; 1999 Feb; 11(1):13-25. PubMed ID: 10367279
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The folding of large RNAs studied by hybridization to arrays of complementary oligonucleotides.
    Sohail M; Akhtar S; Southern EM
    RNA; 1999 May; 5(5):646-55. PubMed ID: 10334335
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inversion of in situ synthesized oligonucleotides: improved reagents for hybridization and primer extension in DNA microarrays.
    Kwiatkowski M; Fredriksson S; Isaksson A; Nilsson M; Landegren U
    Nucleic Acids Res; 1999 Dec; 27(24):4710-4. PubMed ID: 10572170
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Oligonucleotide arrays: new concepts and possibilities.
    Chetverin AB; Kramer FR
    Biotechnology (N Y); 1994 Nov; 12(11):1093-9. PubMed ID: 7765552
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Immobilization of oligonucleotides on glass surface using an efficient heterobifunctional reagent through maleimide-thiol combination chemistry.
    Misra A; Dwivedi P
    Anal Biochem; 2007 Oct; 369(2):248-55. PubMed ID: 17606218
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Determination of the optimized conditions for coupling oligonucleotides with 16-mercaptohexadecanoic acid chemically adsorbed upon Au.
    Wu YT; Liao JD; Lin JI; Lu CC
    Bioconjug Chem; 2007; 18(6):1897-904. PubMed ID: 17970584
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis of DNA-microarrays produced by inverse in situ oligonucleotide synthesis.
    Beier M; Hoheisel JD
    J Biotechnol; 2002 Mar; 94(1):15-22. PubMed ID: 11792449
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Introduction on Using the FastPCR Software and the Related Java Web Tools for PCR and Oligonucleotide Assembly and Analysis.
    Kalendar R; Tselykh TV; Khassenov B; Ramanculov EM
    Methods Mol Biol; 2017; 1620():33-64. PubMed ID: 28540698
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Long oligonucleotide microarrays in wheat: evaluation of hybridization signal amplification and an oligonucleotide-design computer script.
    Skinner DZ; Okubara PA; Baek KH; Call DR
    Funct Integr Genomics; 2005 Apr; 5(2):70-9. PubMed ID: 15682265
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.